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1    Introduction 

This document has been prepared to satisfy the data item "Scientific and Technical 
Report (Final)", as specified by Contract Line Item No. CLIN 0002, Data Item 
No. A003 for the contract PR NO. 1-5-4102, "Co-channel Interference Reduction" 
sponsored by Rome Laboratory. 

1.1    Program Goals 

The primary goal of this effort was to develop algorithms for performing effective co- 
channel interference reduction and co-channel speaker separation. The developed al- 
gorithms would allow suppression of the interference speaker's voice in the co-channel 
signal, leaving the voice of the desired target speaker. Furthermore, the algorithms 
would allow for recovery of the speech of the interference speakers as well. 

1.2    Definition of Terms and Abbreviations 

As a reference, we provide here a brief definition of various terms and abbreviations 
used in this report. 

AR model auto-regressive signal model. 

ARMA model auto-regressive moving-average model. 

co-channel signal A monophonic signal consisting of the superposition of two (or 
more) independent speech signals. 

interference speaker In certain cases, the speech of a particular speaker is of inter- 
est in the co-channel signal; all other speech signals present are not of interest. 
In such cases, those speakers whose speech is not of interest are referred to as 
interference speakers. See target speaker. 

louder/stronger speaker The speaker whose voice signal has the highest energy 
of all speakers present in a given frame of co-channel speech. 



pole-partitioning algorithm The algorithm used to estimate models S\(z) and 
52(2) from Nco(z) and Dco(z). 

pole-partitioning separation algorithm The separation algorithm consisting of 
two steps: 1) estimation of Nco(z) and Dco(z), and 2) estimation of models 
Si(z) and S2(z) from Nc0(z) and Dco(z), accomplished via the pole-partitioning 
algorithm. 

talker/speaker This term is often used interchangeably with "speaker's voice" or 
"speaker's speech signal". 

target speaker In certain cases, the speech of a particular speaker is of interest in 
the co-channel signal. In such cases, that speaker is referred to as the target 
speaker. 

TIR target-to-interference ratio. See WR. 

VVR voice-to-voice ratio. The ratio of the energy of one speaker's voice signal to 
that of the other speaker. Note that we use this term interchangeably with TIR. 

SNR signal-to-noise ratio. The ratio of the energy of a signal to the energy of any 
noise present along with that signal. 

1.3    Summary of Results 

The heart of our proposed co-channel speaker separation and interference reduction 
method is the pole-partitioning separation algorithm. The algorithm is described in 
detail in Section 2.3. However, we summarize it here briefly for the sake of clarity. 
First, we assume the widely known AR signal model 

for each of the individual speech signals present in a given frame of co-channel speech. 
Then for a co-channel signal sco(n) = Si(n) + s2(n), the corresponding Z-transform 
is given by: 

Sco(z)   =   S1(z) + S2(z) 
G]_ <J2 

M{z)     A2(z) 



_   <TIA2(Z) + <r2Ai{z) 
A1(z)A2(z) 

=   Nco^ (2) 
"   Dco(z) 

where 5i(z) and S2{z) are the Z-transforms of the separate speech signals, si(n) and 
s2(n), respectively. 

The pole-partitioning separation algorithm consists of two major processing stages: 

1. Estimation of the polynomials Nco(z) and Dco(z) of the ARMA model Sco(z) = 

£K4 as defined in Eq. 2. 

2. Estimation of the polynomials Ai(z) and A2(^) and gain factors ax and a2 of the 
AR models Si(z) = -fife and S2{z) = -£fa from the polynomials Nco(z) and 
i?co(z) obtained in Step 1. This step is accomplished via the pole-partitioning 
algorithm. 

When the polynomials Nco{z) and Dc0(z) are known a priori, as given by Eq. 2, the 
pole-partitioning separation algorithm is capable of successfully performing Step 2, 
i.e. accurately estimating the two AR models Si(z) and S2(z) from Nco(z) and D^z). 
However, in practice, these polynomials Nc0(z) and Dco(z) are not known, and must 
be estimated directly from the frame of co-channel speech, using ARMA parameter 
estimation techniques. Unfortunately, while many of the existing ARMA parameter 
estimation methods are adequate for ARMA modeling of data, none of them are 
sufficiently accurate for ARMA parameter estimation, except in the case of noise-free 
signals generated by a true ARMA filter excited by gaussian noise. When ARMA 
estimation techniques are used in Step 1 so as to generate estimates Nco(z) and Dco(z) 
of Nco{z) and Hco(z), respectively, the pole-partitioning separation algorithm fails to 
successfully perform Step 2. That is to say, when the estimates Nco(z) and Dco{z) 
generated in Step 1 of the pole-partitioning separation algorithm are fed to Step 2, 
the resulting estimates Si(z) and S2{z) do not, in general, "match" the actual models 
Si(z) and S2(z). The degree to which the estimates "match" the actual models is 
considered in the spectral magnitude sense, i.e. with Si(z) replaced by \Si(z)\z=eiu, 

and similarly for S2(z), Si(z), and S2(z). 

In short, the pole-partitioning separation algorithm is capable of performing frame- 
wise separation when Nco(z) and Dco(z) are known or can be estimated accurately, 



but fails otherwise. In that in a practical system, these polynomials are not known 
a priori, and in so far as these polynomials cannot be accurately estimated with any 
known existing ARMA parameter estimation techniques, the pole-partitioning sepa- 
ration algorithm fails to accomplish the task of blind separation. As such, we have 
chosen not to run the tests described in the Test Plan document previously sub- 
mitted, as the results would be inconclusive. In its place, we have run an alternative 
set of experiments. These are described in detail in Section 4. 

1.4    Report Outline 

This "Scientific and Technical Report (Final)", hereafter referred to as the Final Re- 
port, documents the work completed under this contract, contract PR NO. 1-5-4102, 
"Co-channel Interference Reduction". Section 2 provides a technical description of 
our work and the algorithms developed, particularly the pole-partitioning separation 
algorithm. Also included in this section is a brief summary of an extensive review 
of previous research efforts on the co-channel speaker separation task. The complete 
review, consisting of the Master's Thesis of one of the Research Assistants employed 
under this contract, is provided in Appendix A. Section 3 describes the methods used 
to evaluate the quality of the speech recovered by our co-channel speaker separation 
algorithms. Section 4 describes the results of our experiments. Finally, Section 5 pro- 
vides a discussion of the results and the conclusions drawn. Additionally, suggestions 
for future work are provided. 



2    Co-channel Speaker Separation System Descrip- 
tion 

2.1 Introduction 

Co-channel speaker interference occurs when the voice of one speaker is corrupted by 
the superposition of another speaker's voice on the same communications channel. 
The presence of co-channel interference in a communications scenario results in de- 
creased intelligibility (for human listeners) of both the target speaker's speech as well 
as that of the interfering speaker. While humans can partially compensate for such 
interference, the performance of automatic speech processing systems, such as speech 
recognizers and speaker recognition systems, deteriorates drastically in the presence 
of such interference. As described in the Statement of Work, the goal of a co-channel 
interference reduction system is to suppress the voice of the interfering speaker in 
the co-channel signal, so as to increase the intelligibility of the target speaker. In a 
co-channel speaker separation system, in addition to the voice of the target speaker, 
the voice of the interfering speaker should be recovered as well. 

2.2 Previous Work 

In this section we provide a summary of an extensive review of previous research efforts 
directed at the task of co-channel interference reduction and speaker separation. The 
complete review, consisting of the Master's Thesis of one of the Research Assistants 
employed under this contract, is provided in Appendix A. 

2.2.1    Stages of a Co-channel Interference Reduction System 

In most every system for co-channel interference reduction, there are a number of 
processing stages which need to be implemented or otherwise addressed. These in- 
clude: 

1. Determination of the number of people speaking within each analysis frame 



2. Determination of the voicing (i.e.  voiced or unvoiced) of each speaker within 
each analysis frame 

3. Actual separation of the two voices within each analysis frame 

4. Reassembly of the separated frames into contiguous speech utterances. 

Step #1 is necessary so that subsequent processing stages do not attempt to sepa- 
rate the input signal into two speech signals, or attenuate part of the speech signal, 
when only one speaker is present. Depending on the particular separation scheme uti- 
lized, attempts to separate a single speech signal into two speech signals can produce 
meaningless and confusing results. Similarly, no processing should be attempted in 
intervals of silence, when neither speaker is talking. Step #2 is necessary in order to 
ensure that the appropriate type of processing is performed on the co-channel signal. 
Voiced speech, which exhibits highly structured spectral and time-domain charac- 
teristics, should be processed differently than unvoiced speech, whose spectral and 
time-domain characteristics are largely random. For example, a comb-filter might 
be used to enhance the intelligibility of a segment of voiced speech. However, the 
application of a comb-filter to a segment of unvoiced speech will produce a signal 
which sounds like voiced speech; this is clearly a misleading result. Many co-channel 
interference reduction schemes assume the presence of two voiced speech signals. As 
in the case of step #1, such an assumption can result in meaningless and confusing 
results when both speakers' speech signals aren't voiced. Step #3 refers to the actual 
separation of a frame of co-channel speech into estimates of each speaker's speech; 
in the case of a co-channel interference reduction system (as opposed to a co-channel 
speech separation system), this step entails removing the estimate of the interfering 
speaker's speech from the co-channel signal so as to leave only the voice of the desired 
target speaker. Step #4 is necessitated by the fact that step #3 generates estimates 
of each speaker's speech signal, but it doesn't "know" which signal belongs to which 
speaker. The frames of separated speech produced by step #3 must be reassembled 
in such a way as to maintain continuity of speaker identity across frame boundaries 
so as to properly reconstruct each of the constituent speech utterances. 

2.2.2    Separation/Suppression Methods 

Most of the past research on co-channel interference reduction has focused on process- 
ing step #3 described in the above section. The previous research can be classified 
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along the following dichotomy: pitch-based separation methods and non-pitch- 
based separation methods. In the pitch-based separation methods, separation usu- 
ally proceeds as follows: 

1. Estimate pitch of each speaker's voice 

2. Use these estimates to enhance the target speaker's voice (such as by employing 
a comb-filter tuned to his/her pitch) and/or suppress the interfering speaker's 
voice (such as by using a multi-tooth notch-filter) 

In non-pitch-based methods, separation is accomplished without explicit use of esti- 
mates of the constituent pitches. Almost all of the studies reviewed employ separation 
methods which fall into the former category. 

2.2.3    Pitch estimation schemes 

Most of the multi-pitch estimation algorithms proposed in the surveyed literature can 
be grossly classified as either iterative or non-iterative. In non-iterative algorithms, 
the pitch of both speakers is estimated simultaneously, in a one-shot fashion. In 
iterative schemes, the following sequence of steps are usually observed: 

1. Generate a single pitch estimate 

2. Use this pitch estimate to suppress (as with a multi-tooth notch-filter) the voice 
of one speaker from the frame of co-channel speech 

3. Generate a second pitch estimate from the residual signal left by step #2; pre- 
sumably this is the pitch of the other speaker's voice 

4. (optional) Use this second pitch estimate to suppress the voice of this second 
speaker from the frame of co-channel speech; return to step #1 

In many cases, standard single-pitch estimation schemes were adapted to be multi- 
pitch estimators by utilizing this sequence of steps. 

Most of the pitch estimators employed in the previous studies can also be broadly 
categorized into one of the following groups: 
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• 

• 

auditory-model-based pitch estimation 

Maximum-Likelihood pitch estimation 

• ACF-based (autocorrelation function) pitch estimation 

• frequency domain peak-picking pitch estimation 

Detailed descriptions and a comparative experimental evaluation of these types of 
pitch estimators can be found in the Appendix. 

2.2.4    Conclusions and Future Work 

Upon completion of the literature search on previous research and the subsequent 
evaluation of these studies, we have been led to believe that pitch-based approaches 
for accomplishing separation of co-channel speech have been exhausted. While such 
methods offer some degree of separation under certain conditions, their reliance upon 
the assumption of voiced-on-voiced speech ultimately limits their application to real- 
istic conditions, where speech consists of both voiced and unvoiced segments. 

2.3    Approach 

2.3.1    Problem Formulation 

Often times in speech processing, the sampled speech signal s(n) is modeled as the 
output of a Pth-order auto-regressive (AR), or all-pole, filter over the duration of a 
short analysis frame. In the Z-domain, this can be expressed as: 

«M-S (3) 

where A(z) and E(z) are polynomials in z~l. The polynomial A(z) (actually 1/A{z)) 
models the frequency characteristics of the vocal and nasal tracts, while E(z) models 
the frequency characteristics of the excitation signal. In the case of a voiced sound, 
E(z) corresponds to a periodic excitation signal, whereas in the case of an unvoiced 
sound, E{z) corresponds to a white noise signal.  In a variety of speech processing 
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scenarios (some speech recognition systems and speaker identification systems, for 
instance), only the general spectral shape or spectral envelope of the speech signal, 
as reflected by A(z), is of interest. In such cases, it is sufficient to model E(z) by a 
white noise signal with power a, and the resulting simplified model is given by: 

s^ = Wy (4) 

Using this model, a co-channel signal sco(n) can be modeled as the superposition of 
two signals, Si(n) and S2(n): 

sco(n) = si(n) + s2(n). (5) 

By the linearity of the Z-transform, Sco(z), the Z-transform of sco(ri), is given by the 
sum of Si(z) and S2(z), the Z-transforms of Si(n) and s2(n), respectively. Thus, if 
Si(z) and S2(z) are given by: 

*« = ^ «9 
and 

s^ - Ä&Y (7) 

where Ai(z) and A2(z) are Pth-order polynomials in z_1, then we have: 

Sco(z)   =   SiW + Siiz) 
o\ o2 

A,{z)     A2(z) 
ajA^z) + a2Ai{z) 

Ai{z)A2(z) 
AU*) 
Dco(z) 

(8) 

(9) 

"Separation" of the two speech signals in a frame of co-channel speech can be accom- 
plished by estimation of the polynomials Ai(.z) and A2{z) and gain factors a\ and a2, 
and then resynthesis of the signals Si(n) and s2(n) via Eq. (6) and Eq. (7). Thus, to 
accomplish practical speaker separation, it is necessary to be able to estimate these 
parameters directly from the co-channel signal. 
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2.3.2    Algorithm Description 

The method we have been developing for estimation of the polynomials Ai(z) and 
A2{z) and gain factors ox and a2 from a frame of co-channel speech consists of two 
processing stages: 

1. Estimation of the polynomials Nco{z) and Dco(z) (as defined in Eq. 9). 

2. Determination of Ai{z) and A2(z) (and ox and a2) from Nc0(z) and Dco(z). 

The second step is accomplished via the pole-partitioning algorithm, and collec- 
tively, we call these two steps the pole-partitioning separation algorithm. 

Estimation of N(z) and D(z) The numerator Nco(z) in Eq. (8) is a Pth degree 
polynomial, while the denominator Dco(z) is a polynomial of degree 2P. The task of 
estimating the numerator N(z) and denominator D(z) from a data set, such that the 
filter H(z) = N(z)/D(z) "best" models the data set (assuming that the filter was 
driven by a white noise sequence), is commonly referred to as ARM A (Auto Regres- 
sive Moving Average) system identification. In general, the polynomials N(z) and 
b(z) are independent of each other. However, in this case, as shown by Eq. (8) and 
Eq. (9), we have N{z) = N«, = aiA2(z) + a2Ax(z) and D{z) = Dco(z) = Ax{z)A2{z). 
Obviously, N(z) and D(z) are not independent here. Consequently, the constraint 
imposed by these relationships must not be violated when generating estimates of 
Nco(z) and Dco{z). There are a number of standard techniques available for perform- 
ing ARMA system identification. These include Prony's method, Durbin's method, 
Shanks' method, and the iterative prefiltering method of Steiglitz and McBride (See 
[10] and [3]). There is also a relatively new iterative Prony method [11]. None of these 
methods, however, allow the incorporation of the constraints imposed by the partic- 
ular structure of Nco(z) and Dco(z) which is present in this situation. Furthermore, 
a problem common to these methods is that accurate estimation of N(z) and D(z), 
especially N(z), is rarely achieved unless the data sequence corresponds exactly to a 
sequence generated by an ARMA filter; most of these methods are better suited for 
data modeling rather than for system identification. Nevertheless, these algorithms 
represent the standard methods that are available for ARMA parameter estimation. 
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Determination of Ax{z) and A2(z) (and <n and a2) from Nco(z) and Dco(z): 
Pole-Partitioning Determination of Ax(z) and A2{z) (and ax and <r2) from Nc0{z) 
and Dco(z) is a non-trivial task. This is due to the fact that the relationship between 
the coefficients of Nco{z) and Dc0{z) and the coefficients of Ai(z) and A2{z) is non- 
linear. This is most readily demonstrated with a simple example. Consider the case 

where P = 3, 
Ai(z) = a0 + aiz~l + a2z~2 + a3z 

3 (10) 

and 
A2{z) = bo + b1z-

1 + b2z-2 + b3z-\ (11) 

and Nco(z) and Dc0(z) have been estimated already. Then the product of Ai(z) and 
A2{z), which corresponds to Dco(z), is given by: 

Ai(z)A2(z)   = (a060) 

+ (ao&i + aib0)z~l 

+ (ao^2 + ai6i + a2b0)z~ 

+ (a0&3 + a\b2 + a2bi + a3&0)z~ 

+ (a0&4 + aibz + a2b2 + a3&i + a4&o)z~ 

+ (a0b5 + aih + a2b3 + ^h + a46i + a5b0)z~ 

+ (a0&6 + aih + 02&4 + 03&3 + a^2 + a^1 + a6^o)^~ •       (I2) 

Likewise, the weighted sum of Ax(z) and A2(z), corresponding to Nco(z), is given by: 

axA2{z) + a2 Ax (z)   =   CTI(6O + hz~1 + b2z~2 + hz'3) 

+a2(a0 + axz~l + a2z~2 + a32
-3) 

=   {vibo + cr2aQ) + {o\bi + o2ai)z~ 

+(<7i62 + a2a2)z~2 + (ffi63 + cr2a3)z~3 (13) 

Thus, formulating the equation: 

N{z)     aiA2(z) + a2Ai(z) ^ 
D(z) A1(z)A2(z) 

with N(z) and D(z) known, and equating coefficients of like powers of z~l of the nu- 
merators on both sides of the equation, and similarly for the denominators, we are left 
with a set of (2P -1) + (P +1) = 3P nonlinear equations in 2P+2 unknowns, namely 
the coefficients of Ax{z) and A2(z) and the gain factors <j\ and o2. An analytical so- 
lution to this problem is highly intractable, if not outright unobtainable.  Solution 
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by numerical methods may be attempted. However, as the equations are highly non- 
linear, the associated error function is not likely to be convex, and thus numerical 
methods may converge to local minima solutions rather than the global minimum, 
depending on the initial conditions of the numerical solution method. Obviously, such 
sub-optimal solutions are unacceptable if accurate determination of A\{z), A2(z), ai, 
and a2 are to be obtained. To circumvent this situation, we have developed a new 
method for solving for these parameters given N(z) and D(z): the pole-partitioning 
algorithm. 

Pole-Partitioning Algorithm Inspection of Eq. (8) shows that the poles of 
Sco(z) (i.e. the roots of Dco{z)) consist of the union of the set of roots of A\{z) and 
the set of roots of A2(z). This follows because a given Pth-order polynomial A(z) 
can be expressed as the product of P first-order terms. Mathematically, this is given 

by: 

A(z) = Y,aiz-
i = l[(l-ziz-1) (15) 

t=0 t=l 

where the {zi}i=i....p are the P roots of A(z). Thus, the denominator Dc0{z) = 
Al(z)A2(z) is:      '' 

Al(z)A2(z)   =   {[(l-zuz-^fiil-z^z-1) 

=   l[(l-zkz~l) (16) 
fc=i 

where {zu}i=1...p are the P roots of Ai(z), {z2j}j=i...p are the P roots of A2(z), 
and {zk}k=i...2P are the roots of A\(z) and roots of A2(z) taken collectively. Thus, 
if these 2P roots can be estimated, then the denominator D^z) of Sco(z) can be 
determined trivially, by the product indicated in Eq. (15). If then the roots of the 
numerator Nc0(z) can be estimated, or equivalently, if the polynomial Nc0{z) itself 
can be estimated directly, then what remains is the determination of A\(z) and A2(z) 
(and o\ and a2) from Nco(z) and Dco(z). 

The pole-partitioning algorithm works as follows: Given the 2P poles of D^z), 
( IP \ there are a total of I    p   I ways of partitioning them into two groups of P poles 

each. For a given partitioning, one of these two groups of P poles corresponds to an 
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estimate Äi(z) of Ai(z), and the other group corresponds to an estimate A2{z) of 
A2(z). The polynomials Ai(z) and A2(z) and gain factors ax and a2 are estimated by 
choosing those estimates k\{z) and Ä2(z) (corresponding to a particular partitioning) 
and choice of ax and o2 which minimize the "difference" between 

Nco(z) (17) 
Dco(zY 

as obtained in the previous processing stage (Section 2.3.2), and 

Nco(z) = äiÄ2(z) + a2Äi{z) ,lg, 

bco{z) ~       Äx{z)Ä2{z) 

over all (   p) partitionings and over the range of acceptable values for <7i and o2. 

There are a number of different ways to measure the "difference" described above. 
Note that irrespective of the partitioning chosen, or values of &i and a2, the denomi- 
nator Äi(z)Ä2(z) does not change. Thus, when Nco{z) can be estimated accurately, 
a simple metric to use is simply the Euclidean norm between Nc0(z) and iVco(z): 

\\Nco(z) - Nco(z)\\2. (19) 

However, as indicated in Section 2.3.2, accurate estimation of Nco(z) is rarely accom- 
plished via the existing ARMA estimation methods. Therefore, the use of such a 
direct metric, as described by Eq. 19, can be problematic; if Nco{z) is not a reliable 
estimate, then there is no point is using it in the metric minimization procedure of the 
pole-partitioning algorithm. However, even though an accurate parametric estimate 
of Nco(z) may be difficult, if not impossible, to obtain, it is still possible to measure 
the "difference" between the models of Eq. 17 and Eq. 18 by measuring some kind 
of spectral "difference" between the magnitude spectra represented by each of these 
equations. One such method is the Itakura spectral distortion metric [2] used for 
measuring spectral differences between a "reference" signal model ^^y and a "test" 
signal model -£fe- It is defined as: 

d(AT(z),AR(z)) = log IJ^ AR{UJ) 

AT{U) TJ- ™ 
AR(U) Eq. (20) represents a measure of the flatness of the spectral ratio   -^^ if the 

magnitude of the two spectra are equal, then the integral will be equal tbu'riity, and 
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the resulting value of the metric will be log(l) = 0. There are a few points to note 
about this metric. First of all, it is not a metric in the traditional sense in that it is 
not symmetric. This is easily remedied by defining a new metric d(Ar{z), AR(Z)) as: 

d(AT(z), AR(z)) = d(AR(z), AT{z)) = d(AR(z), AT(z)) + d(AT(z), AR{z))      (21) 

where d(AT{z),AR(z)) is as defined in Eq. (20). A second consideration in using 
Eq. (20) or Eq. (21) is that they apply only to AR models. ARMA models can 
be accommodated by making the following modification to the metric defined by 
Eq. (20): 

d(ST(z), SR(z)) = d(SR(z), ST(z)) = log 
ST(u) 

SR(u) 

du .   . du 

2n 

(22) 
Here, SR(u) = SR(z)\z=eJU, where SR(z) represents the polynomial ratio |[j44 corre- 
sponding to the reference signal. Similarly, ST(U>) = ST{Z)\Z=SJU, where ST(Z) rep- 
resents the polynomial ratio |p£4 corresponding to the test signal to be compared 
with the reference signal. In the case of the pole-partitioning algorithm, we have 
SR(Z) = Sco(z), where Sco(z) = ^1 as determined in the previous processing stage 
detailed in Section 2.3.2. ST(Z) corresponds to the polynomial ratio 

Nco(z) 

Dco(z) 
(23) 

as defined in Eq. (18), which represents an estimate of |Hfj- corresponding to a 
particular pole-partitioning and choice of 0\ and 02• 

As stated above, sometimes it is impossible to get accurate parametric estimates 
of Nco(z). In such cases, the metric described by Eq. (22) can be used by using 
non-parametric estimates of the magnitude spectra SR(u) = Sco(u) in Eq. (22). For 
instance, the discrete-time Fourier Transform (DTFT) can be used to obtain esti- 
mates of these quantities. Estimates may also be obtained using cepstrally-smoothed 
versions of the DTFT [5]. 

Summary of pole-partitioning separation algorithm   The pole-partitioning 
separation algorithm can be summarized as follows: 
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1. Generate estimates of Nco(z) and Dco(z) using one of the standard ARMA 
estimation techniques listed in Section 2.3.2. 

2. Estimate Ax(z), A2(z), au and <r2 by finding that_partitioning and choice_of ax 

and b2 that minimizes the value of the quantity d{Sco(z),Sco{z)), where d{,) is 
as defined in Eq. (22), Sco(z) = ^f|, and 5«,(«) is as defined by Eq. (18). 

A number of practical points should be emphasized. First of all, as stated previously, 
accurate estimation of Nc0{z) is rarely achievable. Thus, in Step 2, a non-parametric 
estimate (e.g. DTFT) of Sc0(z) can be used. However, in Step 1, estimation of Dco(z) 
is still necessary, as the roots of this polynomial are used in the pole-partitioning 
portion of the algorithm. 

A second consideration concerns the actual implementation of the minimization 
procedure used in the pole-partitioning. There are a finite number of different pole- 

partitionings, namely ( p ) combinations. Minimization across this range of parti- 

tions can be accomplished by exhaustively going through all combinations. However, 
the parameters ax and a2 are real scalars; they can take on an infinite number of 
values, namely the range of real numbers. Obviously, it is not possible to exhaus- 
tively find a minimum over an infinite range of real numbers. Even if the values of 
<7i and a2 are constrained to lie with a finite range, they can still assume an infinite 
number of real values within this range. To accommodate this problem, first, instead 
of minimizing over ox and a2 (for a given partitioning) independently, we minimize 
over the ratio % and change the metric of Eq. (22) slightly so as to be invariant to 
the absolute magnitudes of ax and a2, being sensitive only to the relative magnitudes 
of <7X and a2. The modified metric is given by: 

d{ST(z),SR(z))   =   d(SR(z),ST(z)) 

_   .     I r   |ffrM|-£rlgrMlfe 
"    gW~* |sÄMI-J^|sÄMI$ 

/ r \sRw\-r-.\s*M\£ 2*A        (24) 

The integrals in the numerator and denominators of each term represent the mean 
value of the magnitude of the corresponding spectrum. Subtracting these terms has 
the effect of making the metric sensitive only to the relative magnitudes of o\ and 
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a2, not their absolute magnitudes. Then we limit the range of allowable values of the 
ratio 21 to lie within a finite range corresponding to the range of expected values of 
this ratio. Finally, this finite range is sampled at ten equally-spaced points in the 
interval. The choice of ten sampling points is somewhat arbitrary, and represents a 
compromise between adequate resolution of the ratio j£ and processing time. Thus, 

for each of the (   p   ] partitionings, the minimum value of the metric of Eq. (24) 

for that particular partitioning is found by computing the value of this metric at all 
ten points in the ^ range. The global minimum value of the distance metric is found 

by finding the minimum of these f   „   1 minima (one minimum per partitioning). 
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3    Algorithm Performance Evaluation 

This section is a restatement of the test plan described in the previously submitted 
Test Plan document, repeated here for convenience. 

3.1    Database 

The database to be used for testing will consist of recordings taken from the "New 
England" dialect region of the TIMIT database [6]. The recordings in this database 
were conducted in a low noise environment. This is important, since in order to study 
the effect of different SNRs on the separation algorithm, baseline performance must be 
established using the "clean" (no added noise) signals. Each recording in the TIMIT 
database is monophonic, and consists of a single sentence of read speech, spoken by 
one of a number of different speakers, including both women and men. Co-channel 
signals are synthesized by simply summing two or more of these recordings sample- 
wise. In these experiments, we will only be considering the case of at most two people 
speaking simultaneously on a communications channel. In this case, the co-channel 
signal s(n) would be synthesized from the appropriately normalized single-speaker 
recordings {si(n)|n = 1,2,...,Nx} and {s2(n)\n = 1,2,...,N2} as follows: 

s(n) = si(n) + s2(n),   n = l,2,...,rom{Ni,N2). 

The recordings to be used in testing are taken from the "testing" segment of the di- 
alect region #1 (New England) portion of the TIMIT database. The particular record- 
ings chosen are listed in Table 1. The "SEX", "SPEAKER ID", and "SENTENCE 
ID" fields are from the identification nomenclature used in the TIMIT database. First 
these recordings are downsampled to 8 kHz from the original 16 kHz sampling rate. 
Then, from these ten recordings, five different basic co-channel recordings are synthe- 
sized. These are listed in Table 2. For each of these five basic co-channel recordings, a 
number of different versions are created for testing various parameters, such as WR 
and SNR. This is described in detail in the corresponding following sections. 
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index SEX SPEAKER ID SENTENCE ID 

1 m cpmO sal.txt 
2 m dacO sa2.txt 
3 m dpkO sil053.txt 
4 m edrO sil374.txt 
5 m grlO sil497.txt 
6 m jebl sil467.txt 
7 m jwtO sil291.txt 
8 m klsO sil437.txt 
9 m klwO sil571.txt 

10 m mggO sil079.txt 

Table 1: Sentences from TIMIT database to be used in experiments. 

sentence sentence 1 index # sentence 2 index # 

A 1 2 
B 3 4 
C 5 6 
D 7 8 
E 9 10 

Table 2: Synthesized co-channel signals and their constituent single-speaker record- 
ings (Index numbers correspond to entries in Table 1). 
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3.2    Performance Measures 

Both subjective and objective criteria may be used to grade the performance of a 
co-channel speaker separation algorithm. Subjective criteria typically employ the 
aggregated opinions of several human listeners. Objective criteria include spectral 
distortion measures, such as those discussed in [1]. In that subjective measures are 
by their very nature difficult, if not impossible, to replicate, we have decided to use 
strictly objective metrics for evaluating the quality of the speech recovered by our 
speaker separation algorithm. In particular, we have chosen a modification of the 
Itakura-Saito spectral distortion metric [2] with which to measure the quality of the 
separated speech frames. The Itakura-Saito metric is defined as: 

d(HR(z), HT(z)) = log f f  ^r %] (25) 

where AR(z) and AT{z) are the Pth order polynomials corresponding to the linear 
predictive coding (LPC) models 

***(*) =-fh    and    HT
^ = TJ7\ (26) 

AR{z) AT{z) 
of the reference and training speech frames, respectively. Such LPC modeling is well 
known and is discussed in greater detail in Section 2.3.1 However, digressing briefly, 
we simply restate that for short time frames, a speech signal s(n) may be modeled as 
the output of an IIR filter driven by an excitation signal e(n). In the Z-domain, this 
is given by: 

where E(z) is the Z-transform of e(n), ^ is the IIR filter modeling the magnitude 
frequency response of the vocal tract, nasal tract, and lips, and S(z) is the Z-transform 
of the resulting speech signal s(n). In many applications only the spectral envelope, as 
described by ^y, is of interest, and E(z) is reduced to a constant a, which represents 
the overall gain (power) of the speech signal. The resulting simplified model is given 

5W = ^. (28) 

Returning now to Eq. 25, we note that this measure is not symmetric, that is 

d(HR(z),HT(z)) ^d(HT(z),HR(z)), 
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and as such, it does not fully qualify as a metric^ in the strict mathematical sense. 
This is easily remedied by defining a new metric d as: 

d(HR(z), HT(z)) = d(HR(z),HT(z)) + d(HT(z), HR(z)) (29) 

where d(HR(z), HT(z)) is the Itakura-Saito metric as defined in Eq. 25. 

This new metric is used in the following manner for each of co-channel record- 
ings to be used for testing. First, the co-channel recording is segmented into non- 
overlapping frames of 32 ms each. No window is applied; i.e. a 32 ms rectangular 
window is used. The same procedure is applied to each of the two constituent single- 
speaker recordings used in synthesizing the particular co-channel recording, such that 
the frames are time-aligned with the frames in the co-channel recording. Next, these 
two single-speaker files are submitted to a processing step which marks each frame 
as either "silence" or "non-silence". This procedure is described in Section 3.3.3. For 
each frame of the co-channel recording, the corresponding frame in each of the two 
constituent single-speaker recordings is checked for "silence"/"non-silence". If both 
frames of the single-speaker recordings are marked as "non-silence", then that frame 
of the co-channel recording is considered to contain two speakers' voices. Only those 
frames of the co-channel recording, which are marked as containing two voices, are 
submitted to the pole-partitioning separation algorithm; the rest are not processed. 
For each input frame selected in this way, the pole-partitioning separation algorithm 
generates the LPC model estimates 

n^z) = irh   and   ^ = 7TT (30) 
Ai (z) A2{z) 

corresponding to the two speech signals present in the frame. These models are to be 
compared with the LPC models 

H^=m •* HM=^) (31) 

which are estimated directly from the corresponding frames of the individual single- 
speaker speech recordings. Note that the subscripts "1" and "2" in Eq. 30 are ar- 
bitrary, and that such numbering does not reflect the identity of the speaker, but 
merely serves to distinguish between the two model estimates. That is to say that 
in a given frame, Hi(z) may correspond to the voice of Speaker #1, and in the next 
frame, Hi(z) may correspond to the voice of Speaker #2: This being the case, we can- 
not simply compute the distances d(Hi(z),Hi(z)) and d(H2(z),H2{z)), as Hi(z) and 
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Hi(z) may not correspond to the same speaker, and similarly for H2{z) and H2(z). 
To circumvent this possible mismatch, the following two quantities are computed: 

Dmatch    =    diHtWMzV + diftWMz)) (32) 

and 
Dmismatch    =    d(^i(z),Ä2(z))+d(ff2W,Ä1(z)). (33) 

The quantity Dmatch corresponds to the case where Hi(z) and Hx{z) correspond 
to the same speaker, and similarly for H2(z) and H2(z). The quantity DmiSmatch 
corresponds to the case where H\{z) and Hx{z) correspond to opposite speakers, and 
similarly for H2{z) and H2{z); i.e. when Hi(z) and H2(z) correspond to the same 
speaker and H2(z) and Hi{z) correspond to the same speaker. The final measure of 
the separation performance for the ith input frame of co-channel speech is taken as 
the minimum of these two quantities: Dmatch and D mismatch'- 

D(i) =min(Dmatch, Dmismatch)- (34) 

This procedure is repeated for all N frames of co-channel speech, and the final measure 
of performance for the particular co-channel recording is taken as the average value 
a£{D{i)\i = l,2,...,N}: 

Davg = ^J:D{i). (35) 
NU 

3.3    Testing Parameters 

3.3.1    Voice-to-Voice Ratio (WR) 

The WR is the ratio of the average power of the voice of one speaker, arbitrarily 
designated as speaker #1, to the average power of the voice of the other speaker, 
designated as speaker #2. To synthesize a co-channel recording with a WR of 
X dB, first each of the two files to be summed are normalized to unit variance. This 
is accomplished by computing the standard deviation a of each recording and then 
dividing each sample of the recording by this quantity. If the recordings to be summed 
contain substantial amounts of silence, this normalization is computed in such a 
way that the variance over the frames of non-silence is unity. That is, the frames 
containing silence are not used in the computation of the variance of the recording. 
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This is to ensure that the intervals of silence do not bias the estimate of the variance 
of the actual speech in the recordings. Detection of frames of silence is discussed 
in Section 3.3.3. After the two recordings {si(n)|n = 1,2,... ,JVi} and {s2(n)\n = 
1,2,..., N2} have been normalized in this way, they are summed as follows: 

s(n) = a«i(n) + s2(n),   n = 1,2,..., min(iV~i, N2), 

where a = lOäöis. This produces a co-channel recording {s(n) \n = 1,2,..., min(iVi, N2)} 
with a (speaker #l/speaker #2) VVR of X dB. Note that all computations up to 
this point are carried out in double-precision floating-point arithmetic. Finally, the 
co-channel recording is normalized and requantized to 16-bit linear format. This re- 
quantization step is necessary because, in practice, the co-channel signal received for 
processing will typically be sampled and quantized to a fixed precision (e.g. 16-bit 
linear encoding) prior to processing via DSP methods, even if these DSP operations 
are performed using floating-point arithmetic. The normalization of the co-channel 
recording prior to requantization consists of scaling each sample of the co-channel 
signal such that the maximum sample amplitude in the recording is equal to the 
maximum signal amplitude allowed by 16-bit linear encoding. If smax represents the 
maximum signal amplitude in the recording prior to normalization and xmax repre- 
sents the maximum signal amplitude allowed by the encoding scheme (+32767 in the 
case of 16-bit linear encoding), then the co-channel recording is normalized by mul- 
tiplying each sample by the quantity f^. This ensures that the full dynamic range 
of the encoding method is utilized. After completion of these preliminary processing 
steps, the co-channel recording is then ready to be used for testing the separation 
algorithm. 

As discussed in Section 3.1, there are five basic co-channel recordings, each con- 
sisting of the sum of two individual recordings. For each of these recordings A-E 
listed in Table 2, four different versions, each corresponding to a different WR, are 
created. These are listed in Table 3. Each of these 5 x 4 = 20 recordings will then 
be submitted to the performance evaluation procedure described in Section 3.2, and 
for each recording, a corresponding performance score Davg, as described by Eq. 35, 
is computed. Each Davg score will fill one entry of the table shown in Table 4. 

3.3.2    Signal-to-Noise Ratio (SNR) 

The SNR of a given recording is the ratio of the average power of the actual signal 
in the recording, to the average power of any noise present along with the signal. To 
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version VVR 

i OdB 
ii 6 dB 

iii 12 dB 
iv 18 dB 

Table 3: Different VVR versions of the co-channel signals. 

Sentence 
WR 

avg OdB 6 dB 12 dB 18 dB 

A - - - - - 

B - - - - - 

C - - - - - 

D - - - - - 

E - - - - - 

avg - - - - 

Table 4: Table of Davg scores to be obtained by testing under different VVRs. 
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synthesize a co-channel signal with a SNR of X dB, we follow a procedure analogous 
to that described in Section 3.3.1 for creating a co-channel signal with a given WR. 
First, the "clean" (no added noise) co-channel signal is normalized to unit variance. 
Again, this is accomplished by computing the standard deviation a of the recording, 
this time the co-channel signal, and then dividing each sample of the recording by 
this quantity. Also, as in the previous section on WR, silence frames are excluded 
from the computation of the variance of the recording. After the co-channel signal 
{s(n)\n = 1,2,..., N} is normalized, white noise e(n) is added as follows: 

Snoisy{n) = as(n) + e(n),   n = 1,2,..., N. 

Here, {e(n)|n = 1,2,...,N} are white noise samples from a uniform probability 
density distribution with zero mean and unit variance, and a = IO^öSB. This produces 
a noisy co-channel recording {snoisy(n)\n = 1,2,..., iV} with a SNR of X dB. Finally, 
the noise-corrupted co-channel signal snoisy(n) is normalized and requantized to 16-bit 
linear format, in exactly the same manner as described previously in Section 3.3.1. 

Note that the SNR and WR are independent, so theoretically both SNR and WR 
can be varied simultaneously. The primary purpose of this particular experiment 
is to investigate the effect of additive noise on the performance of the separation 
algorithm. Arguably, such additive noise may affect recovery of the louder and the 
quieter speaker in different ways. However, as-a practical consideration to limit the 
experiment variations to a manageable number, we have decided to arbitrarily fix the 
WR at 0 dB, while varying the SNR. 

As discussed in Section 3.1, there are five basic co-channel recordings, each con- 
sisting of the sum of two individual recordings. For each of these recordings A-E 
listed in Table 2, four different versions, each corresponding to a different SNR, are 
created. These are listed in Table 5. Each of these 5 x 4 = 20 recordings will then 
be submitted to the performance evaluation procedure described in Section 3.2, and 
for each recording, a corresponding performance score Davg, as described by Eq. 35, 
is computed. Each Davg score will fill one entry of the table shown in Table 6. 

3.3.3    Voicing Arrangement 

The nature of each of the two overlapping speech signals in a given frame of co-channel 
speech can vary in voicing.   That is, sometimes the frame contains voiced speech 
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version SNR 
i OdB 

ii 6 dB 
iii 12 dB 
iv 18 dB 

Table 5: Different SNR versions of the (0 dB VVR) co-channel signals. 

Sentence 
SNR 

avg OdB 6 dB 12 dB 18 dB 
A - - - - - 

B - - - - - 

C - - ■ - - - 

D - - - - - 

E - - - - - 

avg - - - - 

Table 6: Table of Davg scores to be obtained by testing under different SNRs (with 
VVR fixed at 0 dB). 
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on voiced speech (V/V), voiced speech on unvoiced speech (V/UV), or unvoiced 
speech on unvoiced speech (UV/UV). We have chosen to refer to such differences 
as different voicing arrangements. In that report, we stated that it is necessary to 
ensure that the recordings to be used for testing contain frames in which each of 
these three voicing arrangements is represented. However, we do not feel that it is 
necessary to test each of these three cases explicitly. Each performance measurement 
Davg of the separation algorithm, as measured in the experiments of the previous 
two sections, is an implicit average of the performance scores on each of the three 
voicing arrangements (V/V, V/UV, UV/UV), weighted by the relative frequency 
of those arrangements. As such, we believe that it is reasonable to consider these 
performance measures, with their implicit weighted-average, as an adequate measure 
of the performance of the separation algorithm. No explicit testing of each of the 
three individual voicing arrangements will be conducted at this time. 

Silence Detection 

The silence detection algorithm used in these experiments is premised on the as- 
sumption that the energy level during periods of silence is relatively constant over 
the duration of a recording, and that the variance of the energy over frames of non- 
silence (e.g. speech) is greater than the variance of the energy over frames of silence. 
The* procedure begins by breaking the recording to be analyzed into non-overlapping 
adjacent frames of 32 ms each. For each frame, the energy is computed and stored. 
Then, a histogram is computed on the energy measures for all the frames. The his- 
togram bin with the most counts is taken to be the one indicating frames of silence. 
In the case of a tie, the histogram bin with the lower corresponding energy measure 
is chosen. Finally, all frames with energy measures less than or equal to the upper 
(energy) boundary of the bin with the maximum number of counts are considered to 
contain silence. 
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4    Experimental Results 

As discussed above in Section 1.3, the pole-partitioning separation algorithm fails to 
accomplish its intended task of frame-wise speaker separation due to the inability to 
accurately estimate the polynomials Nco(z) and Dco(z) in Step 1 of the algorithm. As 
a result, we have opted not to perform the tests outlined in the Test Plan document 
(and repeated in Section 3 of this document), as the results of those experiments 
would be inconclusive. Instead, what we have done is compiled the collection of five 
co-channel recordings listed in Table 2. For each of these five sentences, four different 
versions (i-iv) corresponding to different VVRs, as described in Table 3, have been 
synthesized. These twenty sentences, corresponding to the entries in Table 4, were 
then submitted to the pole-partitioning separation algorithm. These files have been 
saved on computer tape with the filenames listed in Table 7. 

We have chosen the Steiglitz-McBride algorithm described in Section 2.3.2 to per- 
form Step 1 of the pole-partitioning algorithm, that of estimating the polynomials 
Nco(z) and Dc0{z). This choice is somewhat arbitrary, in that none of the currently 
available ARMA parameter estimation techniques, as discussed in Section 2.3.2, gen- 
erate sufficiently accurate polynomial estimates for our purposes. Nevertheless, this 
method was deemed to represent the best compromise between performance and com- 
putational complexity among the different methods available. 

No quantitative performance measures have been collected for these twenty test 
co-channel recordings. As discussed above, such results would be inconclusive, and 
furthermore, they could possibly be misleading. Instead, the forty output files (2 
output files per co-channel recording x 20 co-channel recordings) generated by the 
pole-partitioning separation algorithm have been saved on computer tape for reference 
and future analysis. The twenty co-channel recordings and the forty corresponding 
output files are listed in Table 8. 

5    Discussion/Conclusions/Future Work Recommen- 
dations 

We summarize the results of our findings as follows. A new co-channel speaker sep- 
aration algorithm, for performing separation on a frame-by-frame basis, has been 
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recording # file name sentence 1 index # sentence 2 index # VVR 

1 cochan.Al.dat 1 2 OdB 
2 cochan.A2.dat 1 2 6 dB 
3 cochan.A3.dat 1 2 12 dB 
4 cochan.A4.dat 1 2 18 dB 

5 cochan.Bl.dat 3 4 OdB 
6 cochan.B2.dat 3 4 6 dB 
7 cochan.B3.dat 3 4 12 dB 
8 cochan.B4.dat 3 4 18 dB 

9 coehan.Cl.dat 5 6 OdB 
10 cochan.C2.dat 5 6 6 dB 
11 cochan.C3.dat 5 6 12 dB 
12 cochan,C4.dat 5 6 18 dB 

13 cochan.Dl.dat 7 8 OdB 
14 cochan.D2.dat 7 8 6 dB 
15 cochan.D3.dat 7 8 12 dB 
16 cochan.E4.dat 7 8 18 dB 

17 cochan.El.dat 9 10 OdB 
.    18 cochan.E2.dat 9 10 6 dB 

19 cochan.E3.dat 9 10 12 dB 
20 cochan.E4.dat 9 10 18 dB 

Table 7: Co-channel recordings for experiments and corresponding WRs and con- 
stituent single-speaker recordings (Index numbers correspond to entries in Table 1). 
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recording # input file name output file 1 output file 2 

1 cochan.Al.dat outl.Al.dat out2.Al.dat 

2 cochan.A2.dat outl.A2.dat out2.A2.dat 

3 cochan.A3.dat outl.A3.dat out2.A3.dat 

4 cochan.A4.dat outl.A4.dat . out2.A4.dat 

5 cochan.Bl.dat outl.Bl.dat out2.Bl.dat 

6 cochan.B2.dat outl.B2.dat out2.B2.dat 

7 cochan.B3.dat outl.B3.dat out2.B2.dat 

8 cochan.B4.dat outl.B4.dat out2.B4.dat 

9 cochan.Cl.dat outl.Cl.dat out2.Cl.dat 

10 cochan.C2.dat outl.C2.dat out2.C2.dat 

11 cochan.C3.dat outl.C3.dat out2.C3.dat 

12 cochan.C4.dat outl.C4.dat out2.C4.dat 

13 cochan.Dl.dat outl.Dl.dat out2.Dl.dat 

14 cochan.D2.dat outl.D2.dat out2.D2.dat 

15 cochan.D3.dat outl.D3.dat out2.D3.dat 

16 cochan.E4.dat outl.D4.dat out2.D4.dat 

17 cochan.El.dat outl.El.dat out2.El.dat 

18 cochan.E2.dat outl.E2.dat out2.E2.dat 

19 cochan.E3.dat outl.E3.dat out2.E3.dat 

20 cochan.E4.dat outl.E4.dat out2.E4.dat 

Table 8: Twenty co-channel recordings and forty corresponding output files. 
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proposed. The algorithm, called the pole-partitioning separation algorithm con- 
sists of two steps: 1) estimation of the polynomials Nco(z) and Dco(z) of an ARMA 
model Sco(z) — |^{§}, and 2) estimation of two independent AR models Si(z) = ^K 
and S2(z) = ~fe from these polynomials Nco(z) and Dc0(z). The blind estimation 
of the parameters of an ARMA process, i.e. estimation when only the output sig- 
nal is available, as required in Step 1 is a problem unto itself. We note that this 
problem is different than the typical system identification problem, in which both 
the output signal and the input signal are available. Several different methods exist 
for performing (blind) ARMA parameter estimation, but we have found that while 
such methods are often adequate for signal modeling, they are insufficient for param- 
eter estimation. When we rely on any of these methods to estimate the polynomials 
Nco(z) and Dco(z), the subsequent Step 2 fails to properly estimate the single-speaker 
models Si(z) and S2{z). However, if Nco(z) and Dco(z) are known a priori, as in the 
case of co-channel recordings synthesized from multiple single-speaker recordings, or 
alternatively, if Nco(z) and Dco(z) could be accurately estimated, then Step 2, which 
is performed via the pole-partitioning algorithm, can successfully estimate the 
single-speaker models Si(z) and S2(z). 

In light of these findings, we have been investigating ways to improve our sepa- 
ration algorithm so as to overcome its current limitations. A seemingly obvious first 
direction might be to attempt to devise a new ARMA parameter estimation technique 
which would provide the high accuracy necessary for the pole-partitioning algorithm 
in Step 2 to generate meaningful results. The task of devising such a method, ob- 
viously, is a non-trivial undertaking, the demands of which may exceed those of 
developing the rest of the co-channel speaker separation system. However, a factor 
which might be utilized, in order to reduce the complexity of this task, is the fact 
that in our situation, we are not attempting to estimate an arbitrary ARMA model, 
but one with a high degree of structure. That is to say, in the general ARMA estima- 
tion task, the numerator and denominator polynomials of the model H(z) = ^4 are 
independent. In our case, however, N(z) and D(z) have a particular form, namely 
N(z) = Nco(z) = alA2{z) + o2A1{z) and D(z) = Dco{z) = A1{z)A2{z). We see 
that in this case N(z) and D{z) are not independent, but are in fact related, albeit 
in a complex way. This being the case, it might be possible in future work to de- 
velop a new ARMA estimation technique, or modify an existing one, to incorporate 
the constraints imposed by this particular structure so as to obtain more accurate 
estimates. 

In the development of the pole-partitioning separation algorithm, we have implic- 
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itly assumed the presence of two speakers' voices in each analysis frame of the input 
co-channel signal. Even if we are guaranteed that there would be at most two different 
speakers speaking on a given communications channel, this does not guarantee that 
every input frame will contain two voices. Depending on whether or not each speaker 
is speaking at a given moment in time, a given input frame may contain: 1) two 
speakers speaking, 2) one speaker speaking, or 3) silence. Typically, one would want 
to handle each of these three cases separately. In the case of a frame of silence, the 
co-channel speaker separation system should pass the silence through unaltered, or 
perhaps mute the output, rather than attempting to separate the silence frame into 
two frames of speech. In the latter case, the result would be wasted computations at 
best. However, since inter-frame information is often utilized in the processing of an 
input stream, the spurious and misleading estimates generated by attempting to sep- 
arate silence into two speech signals might very well lead to catastrophic failure of a 
system. Similarly, a co-channel speaker separation system should not try to separate 
a frame containing a single speaker's voice into two output frames of speech, for much 
of the same reasons. Finally, an input frame containing two speakers' voices should 
be passed on to the pole-partitioning separation algorithm. To address this issue of 
different voicing arrangements in a given frame of co-channel speech, we had begun 
developing a method for classifying a given input frame into one of the three cases 
listed above. Further work is necessary along these lines to develop a working algo- 
rithm which would precede the frame-wise separation stage in a co-channel speaker 
separation system. 

A final issue that need be addressed in the future is that of reassembling frames 
of separated speech into speaker-continuous utterances. For every input frame of co- 
channel speech, the frame-wise separation stage generates two output frames. How- 
ever, the separation algorithm does not "know" which speaker each output frame 
belongs to; it simply generates two separate signal estimates. Thus, means for re- 
assembling these individual separated frames back into speaker-continuous utterances 
must be developed. This would consist of determining which speaker each output 
frame belonged to. Some approaches might utilize the assumptions of continuity of 
pitch contours or spectral envelope across frames in order to make this assignment 
of frames. Future development is needed along these lines to develop a working al- 
gorithm which would follow the frame-wise separation stage in a co-channel speaker 
separation system. 

A schematic of how the different processing stages would fit into the final system 
is shown in Fig. 1. 
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Figure 1: Schematic diagram showing arrangement of (as yet to be developed) pro- 
cessing stages. 
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ABSTRACT OF THE THESIS 

Methods for Co-channel Speech Separation 

by Alvin A. Garcia 

Thesis Director: Professor Richard J. Mammone 

It is a widely appreciated fact that when a given speech signal has been corrupted 

by the superposition of the voice of an interfering speaker, the result is a co-channel 

speech signal with markedly decreased intelligibility of both the desired talker's speech, 

as well as that of the interfering speaker. Furthermore, such contaminated signals 

result in severe performance degradation of automatic speech processing systems, such 

as speech recognizers, speaker identification/verification systems, and speech coders. 

The goal of a Co-channel Speaker Separation (CCSS) system is to separate the voices 

of a number n > 1 of individual speakers from a single composite signal consisting of 

the sum of the voices of the n speakers. 

In this thesis, a comprehensive review is conducted of all the major systems pro- 

posed to date for performing co-channel speaker separation. It will be shown that most 

systems are designed to perform separation of only voiced speech and, as such, process- 

ing can be divided into two logical steps: 1) estimation of the fundamental frequency 

or pitch of each speaker's voice, and 2) separation of the two voice signals. 

A new method is proposed for such multi-pitch estimation from the co-channel 

signal. The performance of the method is experimentally evaluated and compared 

with the pitch estimation algorithms of the previous work under a variety of testing 

conditions. It is shown that the new method offers the best performance in the case of 
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clean speech, and second best performance in the case of channel degradations. In the 

case of additive noise, however, performance dropped substantially. 
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Chapter 1 

Introduction 

1.1    Problem Description 

Often times in communications scenarios, the voice transmission of a given speaker is 

corrupted by the voices of other, interfering, speakers.   The interference may be in- 

troduced in the communications channel, at some point between the transmitting and 

receiving ends. Such a situation would arise where there are multiple transmitters on 

a common communications channel, as is sometimes the case in tactical communica- 

tions systems. Alternatively, such interference may be introduced at the transmission 

site itself, rather than along the communications path.   This would be the case if, 

for instance, the microphone at the transmitting end was not acoustically isolated, in 

which case all background noises, including voices, would be transmitted along with 

the intended (voice) transmission. This situation is exemplified by speaker-telephones 

and other hands-free communications devices.  Regardless of the actual cause of this 

interference, the result at the receiving end is a co-channel speech signal — a composite 

signal consisting of the sum of the voices of multiple people speaking at the same time. 

In such co-channel signals, the voice of both the intended (target) speaker and 

the interfering speaker(s) are marked by decreased intelligibility.   The human brain 

can compensate for such interference when binaural data is available, as is often the 

case when listening to one person speaking in a room where many people are talking. 

However, when such interference occurs over a monaural channel, separation of the 

different voices by human listeners is much more difficult [30]. Additionally, such co- 

channel speech adversely affects the performance of many automatic speech processing 

systems, such as speech recognition systems [14] and speaker identification systems. 

The goal of an automatic co-channel speaker separation (CCSS) system is to 
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take a co-channel speech signal and separate it into the constituent speakers' voices. 

The resulting separated signals would then be available for human consumption or for 

input into some type of automatic speech processing system. 

1.2    Practical Considerations and Limitations 

An ideal CCSS system would be able to perfectly reconstruct each of the N constituent 

voice signals from the co-channel signal. In other words, if we denote the voice signal 

of the zth speaker by Si[n] and the co-channel signal by sco[n], then 

N 

Sco[n] = Y,siin] 
t=l 

and from this signal, the ideal system would be able to exactly retrieve all N con- 

stituent signals {si[n],..., SN[n]}. Note that the construction of such a system is im- 

possible, even for N = 2. If it was possible, then it would be possible to transmit an 

arbitrary number N > 1 of independent signals, each having bandwidth W, along a 

communications channel of bandwidth W, thereby violating some of the basic laws of 

communications and information theory. Therefore, no CCSS system will be able to 

exactly reconstruct the individual voice signals from the co-channel signal, even for the 

relatively "simple" case of N = 2. In light of this limitation, however, there are two 

considerations which allow for at least the potential of some degree of success in CCSS 

systems. First of all, exact reconstruction of the speech signals is not necessary for ef- 

fective separation. What is necessary is that the reconstructed signals are perceptually 

similar to the original signals.   Exactly what constitutes "perceptual similarity" will 

depend on whether the final consumer of the reconstructed speech is human or ma- 

chine. Furthermore, if the reconstructed speech is to be input to a machine, then the 

measure of perceptual similarity will depend on the particular parameterization (LPC, 

cepstral coefficients, or otherwise) being used to represent the speech signals. The sec- 

ond consideration is that speech signals are constrained by the nature of the human 

speech production system. Knowledge of these constraints, and their implications for 

the produced speech signals, allows for the reduction of the CCSS problem from the 

general task of recovering arbitrary signals from a co-channel signal to the restricted 
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Figure 1.1: Schematic diagram of the human vocal system (after Flanagan et al.) 

task of recovering signals, with some known characteristics, from the co-channel signal. 

1.3    Background 

1.3.1    The Mechanism of Speech Production and the Nature of Speech 

Signals 

The human vocal system is comprised of the vocal tract, the nasal tract, and the lungs 

[32]. The vocal tract consists of the pharynx and the oral cavity, extending from the 

glottis (vocal cords) to the lips. The nasal tract extends from the velum to the nostrils. 

The vocal system is represented schematically in Fig. 1.1 [8]. The sounds of speech are 

the acoustic waves produced by this system when air from the lungs is forced through 

the vocal and nasal tracts. As speech is produced, the nasal tract may intermittently 

be closed off from the vocal tract by means of the velum, and the vocal tract itself 

will change in shape all along its length. These variations allow for the production of 

different sounds. 

Roughly speaking, most speech sounds can be classified as voiced or unvoiced [32].1 

'Strictly speaking, speech sounds can also belong to a third class, plosive sounds. However, most 
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Figure 1.2: General model for speech production (after Rabiner 1978.) 

Voiced sounds are created when the vocal cords are made to oscillate, causing a quasi- 

periodic air wave to excite the vocal tract. The resulting speech waveform is therefore, 

also quasi-periodic. Unvoiced sounds, or fricatives, are produced when air is forced pass 

a constriction made in the vocal tract, causing turbulent air flow which introduces a 

random noise excitation signal into the vocal tract. In this case, the resulting speech 

waveform exhibits no periodicity. In either case, the vocal/nasal tract system exhibits 

resonances, known as formants, at different frequencies.2 The frequency locations and 

bandwidths of the formants change over time as the shape of the vocal tract and the 

position of the velum change during the production of speech. This frequency selectivity 

results in the shaping, or filtering, of the spectrum of the excitation signal. 

1.3.2    Speech Models 

A commonly-employed general discrete-time model for speech production is shown in 

Fig. 1.2 [32].  Here V(z) represents the Z-transform of the discrete-time filter which 

speech sounds fall into one of the other two categories. 
2Sometimes, anti-resonances are present in the frequency response of the vocal/nasal tract system, 

such as during the production of nasals. 
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models the frequency response of the vocal/nasal tract system. R(z) models the effects 

of radiation of the acoustic wave outwards from the lips, and G(z) is the impulse 

response representation of one cycle of the glottal pulses which are produced during 

voiced speech. The parameters Av and An represent the gain factors for the voiced 

and unvoiced excitation sources, respectively, and the switch toggles between the two 

sources, depending on whether or not the modeled speech is voiced or unvoiced. During 

the production of speech, the physical components of the vocal system, corresponding 

to the parameters G(z), V(z), R(z), Av, An, "pitch period", and "voiced/unvoiced" 

switch, move relatively slowly over time. As such, it is often assumed, in both analysis 

and synthesis of speech signals, that these model parameters are constant over short 

time intervals on the order of 10-20 milliseconds. Furthermore, often times the transfer 

functions of the vocal tract model, radiation model, and glottal pulse model in the case 

of voiced speech, are lumped together into a single transfer function model: 

H(z) = G(z)V(z)R(z) (1.1) 

In general, this resulting composite transfer function H(z) may be an autoregressive 

moving average (ARMA) filter. Typically, however, H(z) is modeled as a strictly 

autoregressive (AR) filter, whose parameters are determined by some linear predictive 

coding (LPC) analysis of the speech signal. 

As mentioned above, the excitation signal for voiced speech is quasi-periodic. There- 

fore the corresponding magnitude spectrum is roughly a line spectrum with peaks sit- 

uated at integral multiples of the fundamental frequency /o, or pitch.3 For the random 

noise excitation signal of unvoiced signals, the corresponding magnitude spectrum is 

roughly "white" or flat, and exhibits no evident fine structure, as with voiced signals. 

When the excitation signal propagates through the vocal/nasal tract system, the re- 

sulting signal has a spectrum whose gross spectral shape is dictated by the frequency 

selectivity ofthat system, and whose fine spectral detail is governed by the type of exci- 

tation signal. This is illustrated in Figs. 1.3 and 1.4. Fig. 1.3 shows a sample spectrum 

3In the ensuing discussion, the terms "pitch" and "fundamental frequency" will be used interchange- 
ably, although strictly speaking, usage of the term "pitch" refers to the perception of the fundamental 
frequency /o. 
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of a (synthetic) periodic excitation signal, the magnitude frequency response \H(u)\ of 

the vocal/nasal tract, and the spectrum of the voiced speech signal resulting when the 

vocal tract filter is driven by the periodic excitation signal. Fig. 1.4 shows a sample 

spectrum of a random, non-periodic excitation signal, the same magnitude frequency 

response \H{u)\ of the vocal/nasal tract, and the spectrum of the resulting unvoiced 

speech signal. 

1.4    Outline of the Thesis 

In Chapter 2, a comprehensive review of all major previous work on the co-channel 

speaker separation task is conducted. Limitations of each of the proposed methods are 

discussed. It is shown that the operation of most of the methods can be divided into 

three logical steps: 1) fundamental frequency estimation from the co-channel signal, 2) 

separation of the signals using these /o estimates, and 3) association of the separated 

frames with the different speakers, so as to assemble these frames into continuous speech 

utterances. 

A new method for fundamental frequency estimation from the co-channel signal is 

also presented in Chapter 2. Its operation is discussed and various implementational 

considerations are addressed. 

In Chapter 3 the performance of the new method is evaluated and compared with the 

pitch estimation techniques of the CCSS methods reviewed in Chapter 2. A discussion 

and analysis of these results follows in Chapter 4. 
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Figure 1.3: Illustration of the spectra of voiced speech. 
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Figure 1.4: Illustration of the spectra of unvoiced speech. 
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Chapter 2 

Review of Co-channel Speaker Separation Systems 

2.1    Speaker Separation Algorithms 

Over the years, a number of methods have been proposed for handling the problem 

of co-channel speech speaker separation; reference [6] contains a brief review of many 

of these methods. While many of the CCSS algorithms can theoretically handle mul- 

tiple speakers, in practice only the two speaker case has been addressed.1 Typically, 

one speaker is considered the desired or "target" speaker, while the other speaker is 

referred to as the "interfering" speaker; the ratio of the target speaker's power to the 

interfering speaker's power is sometimes referred to as the Target to Interference Ratio 

(TIR) or Voice to Voice Ratio (WR). In most CCSS systems to date, the processing 

can be divided into three main components: 1) fundamental frequency estimation, 2) 

actual separation of the target and interfering speakers' speech, and 3) association of 

the separated speech segments with the appropriate speaker.  Many approaches only 

address steps 1) and 2). The last processing stage is necessitated by the fact that in 

many algorithms, the processing of steps 1) and 2) is achieved frame-wise.  That is, 

the input co-channel signal is divided into short frames of contiguous samples and, for 

each of these input frames, two output frames are generated, one corresponding to the 

target speaker's voice and the other corresponding to the interfering speaker. However, 

the processing involved in the separation typically doesn't "know" which is the target 

speaker and which is the interfering speaker; it only assumes the presence of two voices. 

Therefore, once this separation is accomplished, some type of post-processing is nec- 

essary to maintain continuity of speaker identity from (output) frame to frame. This 

^n [25], Min et al. suggest possible extensions of their method to the case of three speakers; however, 
at the time of the paper's publication, no experiments had been conducted to this end. 
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processing is still necessary, even if the separation processing doesn't proceed frame- 

wise, if there are periods of silence in the co-channel signal. In this case, continuity 

in speaker identity must be maintained across the silence intervals. Finally, it should 

be noted that some of the methods do not attempt reconstruction of the separated 

signals. Rather, they segregate the components of the two speech signals in the repre- 

sentation space of some signal model, such as a correlogram for instance, but do not 

provide a means for reconstructing the corresponding time domain signals from this 

representation space. 

Most methods are designed to handle only voiced speech. That is, both the target 

and interfering voices are assumed to be voiced. A crucial processing step in these 

algorithms is the accurate determination of the target speaker's pitch, the interfering 

speaker's pitch, or both pitches simultaneously. Once the pitch of each of the two 

speakers is estimated, each of the component speech signals can be extracted by comb- 

filtering the co-channel signal, or by analogous processing techniques, such as synthesis 

from selective reconstruction of the co-channel spectra. Alternatively, some methods 

only estimate the pitch of one speaker and then extract his/her voice via comb-filtering 

or similar spectral enhancement techniques. The voice of the other speaker is then 

recovered by "subtracting"2 the estimate of the first speaker's voice from the composite 

signal, leaving behind the second speaker's voice. 

As outlined above, most proposed CCSS algorithms perform frame-wise separation 

of the co-channel speech; a few also address the task of associating the separated speech 

segments. However, a number of equally important issues have yet to be adequately 

addressed before any of these algorithms can be utilized in a practical CCSS system. 

First is the ability to determine the actual number of people speaking at each instant of 

time. Even in the two-speaker case, both speakers aren't always speaking; sometimes 

one person, or both people, are silent. Few of the CCSS methods to date address this 

critical issue; this is a severe limitation, as pauses of silence occur naturally in normal 

speech. A practical CCSS system needs to employ input-dependent speech enhancement, 

2The quotes indicate that subtraction isn't necessarily performed on the signals themselves, but may 
be performed on some representation of the signals, such as a Fourier Transform, for instance. 
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in the sense that the type of processing, and the decision as to whether or not any 

processing should be done at all, should depend on the nature of the input signal (see 

[2], for instance). For example, in the case of only one speaker, the system should not 

attempt to make some reconstruction of the silent speaker's voice. At best, the result 

would be wasted computations; more likely, the resulting processing of silence would 

lead to a meaningless reconstruction, which may not only result in a confusing output 

signal for that analysis interval, but may also interfere with subsequent processing 

stages which rely on the estimates from previous frames. 

A second task which remains to be developed further is that of detecting whether 

the input signal(s) are voiced or unvoiced. Again, the processing of the co-channel 

signal should proceed differently, depending on the voicing3 of the input speech. In 

the case of a single, unvoiced speech signal present in the co-channel signal, a CCSS 

system might pass the signal through unprocessed, whereas in the case of a single, 

voiced speech signal, some type of enhancement by comb-filtering might be employed. 

In the case of voiced/unvoiced speech and unvoiced/voiced speech, the CCSS system 

should process the unvoiced speech differently than the voiced speech; e.g. comb-filter 

the co-channel signal to enhance the voiced speech and use a multi-notch filter on the 

co-channel signal to suppress the voiced speech and leave the unvoiced speech. 

The case of unvoiced/unvoiced speech is a third issue which needs to be addressed. 

The author is not aware of any methods to date which have been designed to handle 

separation of unvoiced/unvoiced speech. In this case, there are no regularities in the 

time waveforms or spectra of either speaker's speech which can be used to segregate 

the two speech signals. This area remains open for exploration. 

2.2    Previous CCSS Work 

2.2.1    Parsons' Method of Harmonic Selection (1976) 

One of the earliest efforts towards the co-channel speaker separation task was by Parsons 

in 1976 [30]. The basis of the separation process involves identification and association 

3By voicing, we mean the nature of the speech signal excitation: voiced or unvoiced. 

A-ll 



of harmonic peaks in the magnitude spectrum of the co-channel signal, which is assumed 

to consist of only voiced speech. The operation of the entire system can be broken down 

into the following stages: 1) pre-processing, 2) peak separation, 3) pitch extraction, 4) 

tracking, and 5) re-construction. Pre-processing consists of blocking the input signal 

into Hanning-windowed frames, and then computing the corresponding STFT (short 

time Fourier transform), hereafter "spectrum," of each frame. In the peak separation 

stage, local maxima in the magnitude spectrum are identified as potential harmonic 

peaks, and estimates of their frequency, amplitude, and phase are entered into a "peak 

table." Overlapping, or superimposed, peaks are detected by testing each peak in the 

magnitude spectrum for symmetry, sufficient distance from neighboring peaks, and well- 

behaved phase. If overlapping peaks are detected, they are separated by subtracting an 

ideal peak shape, computed from the window shape and the estimated parameters (FM 

rate, amplitude) of the larger peak, from the spectrum, leaving behind the smaller of 

the two overlapping peaks, whose frequency and amplitude estimates are then entered 

into the peak table. Pitch extraction is accomplished by employing an adaptation of the 

Schroeder histogram method [34] on the frequencies gathered in the peak table. In the 

Schroeder histogram method, a histogram is formed of the frequencies of all peaks in a 

given signal's magnitude spectrum, and all integer sub-multiples of these frequencies. 

Since harmonic frequencies are integral multiples of the fundamental frequency, the 

maximum in the Schroeder histogram should correspond to the fundamental frequency 

of the signal. Parsons adapted this method for dual pitch estimation as follows: First 

the Schroeder histogram is applied to the frequencies present in the peak table to 

identify the pitch of the louder speaker. Then this pitch and all integral multiples of 

this pitch are removed from the peak table. The Schroeder histogram is then applied 

to the peak frequencies remaining in the peak table, which presumably belong to the 

quieter speaker, and so the maximum of the resulting histogram should correspond to 

the pitch of the quieter speaker. Once pitch estimates of both speakers are calculated in 

this manner, the individual peaks in the peak table are associated with the speaker with 

a harmonic frequency, i.e. integral multiple of /o, closest to the frequency of that peak. 

An output frame for each speaker is generated by computing the inverse STFT of the 
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spectrum consisting of only those peak components attributed to that speaker. At this 

point, the actual task of separation is finished, and what remains is the association of 

the separated segments of speech with the corresponding speakers. Parsons prescribes a 

method to accomplish this association task which utilizes the assumption of continuity 

of the pitch track (trajectory) for each speaker. At each step, the pitch of each of the 

two output frames is compared with the pitch predicted by a least squares linear fit of 

the previous three pitch estimates of each speaker's pitch track. Each output frame is 

then assigned to the pitch track whose predicted pitch for that time instant is closest 

to that frame's actual pitch. This process is repeated until pitch tracks are generated 

for the entire duration of the co-channel utterance. 

Reported performance of this system is "generally good," performing best when 

both speakers are of comparable loudness. Nevertheless, there are a number of prac- 

tical difficulties which can potentially hinder performance of this system.  First, the 

system relies on the assumption that both speakers' speech is voiced; in the event of 

frames where one or both speakers' speech is unvoiced, the resulting pitch estimates 

are meaningless, and the resulting time-domain waveform reconstructions are not rep- 

resentative of the actual individual speech signals.  Furthermore, such spurious pitch 

estimates would degrade the subsequent pitch tracking. Another limitation is that the 

system assumes that the underlying speech is continuous; i.e. that there are no pauses 

of silence. In the event of silence intervals in either speaker's speech, the method pro- 

ceeds to make spurious pitch estimates, as in the case of unvoiced speech. Reliance on 

these assumptions is not unique to Parsons' algorithm; as stated earlier, these problems 

are common to most CCSS algorithms. However, there remain a number of limitations 

specific to Parsons' method. First is the issue of sufficient frequency resolution. A time 

window duration of of 51.2 msec is used, representing a compromise between frequency 

resolution and time resolution.  As is well known, the frequency resolution (A/) of a 

Fourier Transform-based spectrum is proportional to the reciprocal of the window du- 

ration: A/af Infinite frequency resolution (A/ = 0 <& T = oo) would be desired 

to facilitate the task of resolving and identifying harmonic peaks. However, since the 

parameters of speech signals remain approximately stationary for only short periods of 
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time, roughly 20-30 msec, the time window must be limited to these durations, thus 

limiting frequency resolution. This frequency resolution limitation is exacerbated by 

the fact that the pitch of speech is never perfectly stationary (constant), even within 

these short time periods, and in fact can change by up to 10% between two successive 

periods [22]. For the range of human pitch frequencies, there are typically several pitch 

periods within an analysis frame of 51.2 msec. Pitch non-stationarity within the anal- 

ysis frame results in increased FM broadening of the harmonic peaks with increasing 

frequency, in a constant-Q fashion. Fig. 2.1 shows the magnitude spectrum of a frame 

of voiced speech which illustrates the broadening of harmonic peaks with increasing 

frequency. Parsons claims that 75% of the overlapping peaks can be resolved by the 

0   500  1000  1500  2000  2500  3000  3500  4000  4500  5000 
frequency (Hz) 

Figure 2.1: Illustration of harmonic smearing due to pitch non-stationarity within anal- 
ysis interval. 

spectral subtraction method described above; the remaining 25% are spaced too closely 

to be resolved. However, Parsons notes that these peaks, which cannot be uniquely 

assigned to one or the other speakers and are thus assigned to both speakers, result in 

crosstalk in the reconstructed speech signals. 

Another difficulty encountered in this system occurs when one speaker's voice is 
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significantly louder than the other's. In these situations, Parsons notes that the intel- 

ligibility of the target speaker's reconstructed speech decreases with increased volume 

of the interfering speaker. This is because as the volume of the interfering speaker in- 

creases, the spectral peaks due to the target speaker become more and more obscured, 

until they can only be detected via the spectral subtraction method detailed above. 

However, the spectral subtraction method relies on the assumption of ideal harmonic 

peak shape, and two factors limit its effectiveness, especially in the case of a louder 

interfering speaker, even if the two speakers' pitches are estimated accurately. First is 

the presence of noise: if the noise floor is comparable in power to the quieter speech 

signal, obviously the harmonic peaks of the quieter speaker will be difficult to identify 

among the peaks in the difference spectrum left after spectral subtraction of the larger 

peaks.  Secondly, the spectral subtraction method computes ideal peak shapes based 

upon the estimated frequency, amplitude, and FM rate of the larger peaks, and the 

window shape. These estimates will always be biased by the presence of the smaller, 

obscured peaks. Furthermore, a linear pitch (corresponding to a constant FM rate) is 

assumed in computing the ideal peak shapes; it is not known how to compute peak 

shapes due to arbitrary pitch changes, or equivalently, arbitrary frequency modulations 

[41]. These inaccuracies in peak shape computation also lead to poor estimates of the 

smaller peaks, leading to poor pitch estimates and reconstruction of the quieter speech 

signal. 

2.2.2    Hanson and Wong's Harmonic Magnitude Suppression Tech- 

nique (1984) 

In [10], Hanson and Wong propose a method for suppression of an interfering speaker's 

voice in a co-channel speaker scenario, rather than for actual separation, which would 

imply recovery of both the target and interfering speaker's speech. The basis of the 

method is spectral subtraction of the interfering speaker's voice from the co-channel 

signal's short-time spectra. First, it is assumed that the pitch of the interference can be 

determined for each frame of the input co-channel signal; the authors do not propose 

a method for accomplishing such pitch estimation, but maintain that in the case of 
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negative TIRs, the energy of the co-channel signal is dominated by the interference, and 

so any pitch estimator should tend to detect the pitch of the interference signal. Once 

the pitch /o of the interference signal is determined, its magnitude spectrum \N(f)| is 

approximated by the spectrum of the linear combination of windowed sinusoids with 

frequencies p x /0, p = 1,2,... L, and amplitudes given by the amplitude of the co- 

channel spectra at those harmonic frequencies. Mathematically, this is given by: 

\N(f)\ = EDPWmlU-fp) 
p=l 

where Dp is the amplitude of the co-channel spectra at frequency px/o and Wmi is the 

main lobe of the magnitude Fourier transform of the window shape. The estimate of 

/o is refined by perturbing its value within a small interval about the initial estimate, 

so as to find the value which maximizes the power of N. The interference magnitude 

spectrum estimate is then subtracted from the co-channel magnitude spectrum, leaving 

an estimate of the target signal magnitude spectrum. This difference magnitude spec- 

trum is then converted into a time domain signal via an inverse STFT using the phase 

estimates from the co-channel spectrum. The algorithm is described diagrammatically 

in Fig. 2.2. 
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Figure 2.2: Schematic diagram of HMS speech enhancement system. 
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The system was evaluated in terms of intelligibility of the enhanced target speech 

vs. intelligibility of the unprocessed co-channel speech; reported performance indicated 

that the system offered significant improvements. The system, however, suffers a num- 

ber of practical limitations. First and foremost is the lack of provisions for estimation 

of pitch from the co-channel signal. This feature is such a fundamental element of most 

CCSS systems that its omission effectively renders the system unusable for any realistic 

situation, where the interference and target signals are not known prior to summa- 

tion.  Also, as with Parsons' design, this system does not attempt to detect voicing 

or silence, nor does it provide accommodations for appropriate handling of unvoiced 

speech. Furthermore, although the system is designed as a suppression rather than a 

separation system, there still remains the problem of maintaining speaker continuity 

between frames; the system assumes that the pitch estimation algorithm will always 

find the pitch of the interference speaker and not that of the target speaker. Such an 

assumption isn't valid, since in general, the relative power of the two speakers' signals 

will vary. Furthermore, even if the relative power of the speakers does not vary, i.e. the 

TIR doesn't change sign, there is no guarantee that the pitch estimation algorithm will 

always pick the pitch of the louder speaker. 

Another limitation of the system is the assumption of pitch stationarity within 

each analysis frame. This assumption limits the amount of interference suppression 

achievable, even with accurate pitch estimation, because, as indicated in section 2.2.1, 

pitch non-stationarity results in FM broadening of the harmonic peaks. Since the 

proposed method assumes stationary pitch, all the peak shapes in the interference 

spectrum approximation have uniform width, not constant-Q, as is the case for harmonic 

signals with slightly varying pitch. This is illustrated in Fig. 2.3 which shows the spectra 

of a 100 msec frame4 of voiced speech and its strictly periodic approximation, and the 

resulting difference spectrum. It is evident from this figure that suppression of the 

signal spectrum is far from complete, due to the mismatch between ideal and actual 

harmonic peak shapes. 

4Hanson and Wong do not report the duration of the window used; 100 msec is used here for 
illustration purposes only. 
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Figure 2.3: Illustration of effects of harmonic smearing in HMS system. 

A-18 



The amount of interference suppression attainable, even with stationary pitch and 

accurate pitch estimates, is further limited by the use of magnitude spectral subtraction, 

as opposed to complex domain spectral subtraction. The magnitude of the Fourier 

transform of the sum of two signals will only be equal to the sum of the magnitudes of 

the Fourier transforms of the individual signals if the two signals are in phase, otherwise 

they will differ. Since this situation of coherent phase will not occur in general, the 

estimate of the target signal's spectrum obtained by subtraction of magnitude spectra 

will not be truly representative of the magnitude spectrum of the actual target signal. 

2.2.3    Weintraub's GRASP Sound Separation System (1984) 

In [42], Weintraub proposes the GRASP (Grouping Research on Auditory Sound Pro- 

cessing) sound separation system based upon a computational model of the cochlea. 

The basic operation of the system consists of decomposing the co-channel signal into 

a cochlear model representation, similar to a filter bank, and then grouping together 

filter channels which are local in time and which share a "consistent set of features." 

Weintraub suggests a number of features with which to group filter channels, including: 

pitch period, pitch dynamics, degree of periodicity, and changes in amplitude. How- 

ever, the study detailed in the paper only considers a single feature, the pitch period, for 

lack of a method for measuring consistency along a multiple-feature parameterization 

of each channel. 

In the cochlear model, the incoming signal is passed into a cascade/parallel filter 

bank arrangement of bandpass filters, with center frequencies spanning the 0-8kHz fre- 

quency range. The output of each filter is half-wave rectified and then passed through 

an automatic gain control, and the pitch of the resulting signal is determined by find-, 

ing the maximum in its "coincidence function," a function similar to the short-time 

autocorrelation function. After the pitch is computed for each channel in this way, a 

histogram is computed of these pitch period estimates, and if a sufficiently large peak 

is found, a voiced sound is assumed to be present with pitch equal to the frequency 

corresponding to that peak. All channels with pitch close to this frequency are assigned 

to a "group."   The histogram is then computed on the pitch period estimates of the 
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remaining unassigned channels, to determine whether or not a second voiced sound is 

present, and if one is detected, those channels with pitch estimates near the frequency 

corresponding to this new peak are assigned to a new group. Once a group is started, 

adjacent time frames are searched for channels with consistent features, i.e. pitch. 

The proposed GRASP model was intended only as a portion of an overall framework 

for speech separation. As such, it lacks many capabilities necessary in a practical speech 

separation system. First of all, the system does not provide a means for reconstruction 

of time domain signals, or even magnitude spectra, from the cochlear model represen- 

tation. Therefore, even if complete source separation was attainable in the cochlear 

model representation, the corresponding separated sounds could not be heard or even 

fed into an automatic speech processing system. Obviously, the lack of this important 

processing stage severely limits the practical utility of the system. More recent work 

[39] has addressed the reconstruction of time domain waveforms from cochlear model 

representations. However, such work only allows for reconstruction of time domain 

waveforms from complete correlograms5; the GRASP system generates incomplete cor- 

relograms because only some channels of the correlogram are assigned to a given sound 

group, the remaining channels being distributed among the other group(s). 

As with most other methods, the GRASP system does not provide a means for 

separation of unvoiced/unvoiced speech. However, the system does provide means for 

detection of voicing and estimation of both speakers' pitch from the co-channel signal. 

In addition, it prescribes a method for maintaining speaker continuity across time based 

on assumptions of pitch continuity. However, the system requires that there are fre- 

quency ranges in which the energy of one of the speakers' voices dominates the output 

of the filter channels in those ranges. If the spectrum of one of the speakers' voices 

is consistently louder than the other's across the entire analysis frequency range, the 

system will not be able to detect the pitch of the weaker speaker. Furthermore, even if 

estimation of the quieter speaker's pitch was still possible in this scenario, separation 

5A correlogram is a two dimensional function displaying the autocorrelation function as a function 
of filter channel center frequency. 
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based on pitch differences alone is not always sufficient; Weintraub notes that other fea- 

tures of the filter channels, such as pitch dynamics, degree of periodicity, and changes 

in amplitude, should be used in addition to pitch. 

2.2.4    Weintraub's Computational Model for Separating Two Simul- 

taneous Talkers (1986) 

In [43], Weintraub proposes a system for performing separation of simultaneous speech 

based upon an auditory model of the cochlea. The system builds upon his previous 

work presented in [42]; the same auditory model as described in section 2.2.3 is used. 

However, a number of important additions were made, including: 1) an algorithm 

for tracking the pitch period of each of the two speakers, 2) a method for estimating 

the voicing characteristics (voiced/unvoiced) of each speaker's voice, 3) a method for 

estimation of the spectrum of each speaker's voice, and 4) a method for resynthesis of 

the speech waveforms from these spectral estimates. 

The system was evaluated by feeding separated speech, generated by the system, 

into a separate continuous-digit-recognition system. The processing resulted in an im- 

proved recognition rate of 57%, up 13% from the 44% recognition rate of the same 

recognition system on the unprocessed co-channel speech. While such improvements 

are encouraging, the results still fall far below the 87% recognition rate achieved on 

clean speech. Intermediate results presented in the paper indicate that there is room 

for improvement in each of the processing stages, e.g. pitch estimation, voicing estima- 

tion, etc. 

2.2.5    Naylor and Boll's extensions of HMS (1987) 

In [27], Naylor and Boll propose several enhancements and extensions to the Harmonic 

Magnitude Suppression (HMS) system described in section 2.2.2. The new system is 

shown schematically in Fig. 2.4. As with the original system, the focus is on the neg- 

ative TIR case; i.e. when the interfering speaker is louder than the target speaker. 

However, unlike the original system, the new system allows for estimation of the inter- 

fering speaker's pitch and source-state (voiced, unvoiced, or silent) directly from the 

A-21 



co-channel signal. Furthermore, the new system also provides for attenuation of un- 

voiced interference, in addition to voiced interference. First, the authors evaluate four 

single-pitch estimation methods for determination of the louder, interfering speaker's 

pitch, and determine that the Maximum Likelihood Pitch Estimation technique [44] 

offers the best performance across a variety of degradations (additive noise, channel 

effects, co-channel interference). 
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Figure 2.4: Schematic diagram of modified HMS speech enhancement system. 

A number of algorithms were tested for determining the source-state of the louder 

talker. These included: ratio of power at harmonics to total power, error between HMS 

model spectrum and real spectrum, and the peak correlation value of the Maximum 

Likelihood Pitch Estimator. The latter was found to perform the best, and was incor- 

porated into the final system. As indicated earlier, estimation of the source-state of 

each speaker is necessary so that the appropriate type of processing can be used. In 

the case of voiced interference, the standard HMS method of spectral suppression is 

used, as detailed in section 2.2.2. In the case of silence, no processing is done at all; 

i.e. the input signal is passed through unprocessed, straight to the output. To handle 

the suppression of unvoiced interference, three techniques were evaluated: lowpass fil- 

tering, inverse spectral filtering, and smoothing by cepstral liftering; lowpass filtering 
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was found to perform attenuation of unvoiced interference with the least attenuation 

of the (voiced) target signal. 

The system offers some important improvements over the original HMS system, in- 

cluding estimation of the interference pitch from the co-channel signal, estimation of 

the louder talker's source-state, and suppression of unvoiced interference. Nevertheless, 

it still has several limitations. First of all, it still relies on the assumption that the in- 

terfering speaker is the louder of the two speakers; such a limitation isn't very practical 

since, if this assumption is violated, the system will attenuate the target speaker when- 

ever his/her voice becomes louder than the interfering speaker's voice. Such a limitation 

might be circumvented if the system provided a method for maintaining continuity of 

speaker identity from frame to frame; however the system does not. Furthermore, even 

if the target speaker's voice is always quieter than the interfering speaker's, the pitch 

estimator will not always pick the pitch of the louder, interfering speaker, especially 

if the power of the target speaker's voice isn't considerably lower than that of the in- 

terfering speaker, or if the target speaker has a strong first formant relative to the 

interference speaker. Another limitation of the system is it's inability to estimate the 

pitch and voicing of the quieter, target speaker; the target speaker's voice is estimated 

as the residual left after suppression of the interference speaker's voice. As HMS will 

not fully cancel the voice of the interfering speaker, it would be desirable to be able 

to enhance the estimate of the target speaker's voice, such as by comb-filtering, in the 

case where the target speaker's voice is voiced.  However, such enhancement requires 

knowledge of the target speaker's pitch, and the decision whether or not to perform 

such enhancement depends on knowledge of the target speaker's source-state. 

2.2.6    Lee and Childers"Co-channel Speech Separation via Multisignal 

MCESA (1988) 

In [16], Lee and Childers propose a method for separation of co-channel speech sig- 

nals based on the multisignal Minimum Cross Entropy Spectral Analysis (MCESA) 

method. Multisignal MCESA [12] is a method for estimating the power spectrum of 

one or more independent signals from a co-channel signal when prior estimates of each 
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spectra are available. Lee and Childers do not propose a new method for generating the 

initial power spectra estimates, but instead utilize Hanson and Wong's HMS method 

[10] described in section 2.2.2, which is well suited for the negative TIR cases they 

address. They note that Parsons' Method of Harmonic Selection [30], as described in 

section 2.2.1, is better suited for situations where the target and interference power are 

roughly equal, i.e. TIR « 0 dB. Once initial estimates of the target and interference 

power spectra are constructed via the HMS method, their inverse STFTs are computed 

to obtain the corresponding autocorrelation functions. These autocorrelation functions 

and the autocorrelation function of the co-channel signal are then fed to the multisignal 

MCESA processor. The multisignal MCESA processor generates new estimates of the 

target and interference power spectra which are consistent with the characteristics of 

the autocorrelation function of the co-channel signal. A block diagram of the system is 

shown in Fig. 2.5 
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Figure 2.5: Schematic diagram of multisignal MCESA speech enhancement system. 

Lee and Childers reported quantitative results showing that the multisignal MCESA 

method produces enhanced speech which has lower spectral distortion with respect to 

the original speech signals than does the HMS method alone. Similar results were 

posted for subjective measures obtained from human listeners. However, the proposed 
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multisignal MCESA method is not a standalone speech separation algorithm, but in- 

stead is a method for improving initial estimates of separated speech spectra generated 

via another separation algorithm, in this case, Hanson and Wong's HMS method or 

Parsons' harmonic selection method. As such, it is subject to the same limitations of 

these methods, which are discussed in section 2.2.2 and section 2.2.1, respectively. 

2.2.7    Min et al.'s Automated Two Speaker Separation System (1988) 

In [25], Min et al. propose a method for co-channel speech separation based upon the 

use of variable frame size orthogonal transforms. The processing proceeds along two 

parallel paths, "channel A" for the first speaker, and "channel B" for the second. A 

diagram of the system is given in Fig. 2.6. For each channel, the following steps are 

performed: First, the pitch of the target speaker of the given channel is estimated by 

picking the maximum in the the standard short-time ACF (autocorrelation function) 

N-l-k 
Rn(k)=   £   x{n + m)x(n + m + k) (2.1) 

m=0 

within the range of lag values k corresponding to feasible human pitch periods, and if 

this fails to yield an obvious pitch estimate, the AMDF (average magnitude difference 

function): 
N-l 

AMDF(n,A:)= £ \x{n + k) - x(n + m + k)\,„ (2.2) 
m=0 

or the ACF of the modified speech signal, x5(n), is computed to generate a pitch 

estimate. At each frame, estimates of the given channel's target speaker's pitch are 

guided by estimates from the previous frame's and the next frame's pitch estimates. 

Once the pitch has been estimated, an orthogonal transform such as the FFT (Fast 

Fourier Transform) or FTT (Fast Triangular Transform) is computed over a frame with 

length equal to an integral multiple n = 4 of the pitch period. Next, the transformed 

speech is estimated to be either voiced or unvoiced/silence by comparing the ratio of the 

energy of the transform coefficients at harmonic frequencies (indices) to the energy of 

all the transform coefficients. Again, estimates of voicing parameters from the previous 

and next frame are used to guide the current frame's estimate. If the current frame is 

estimated to be voiced, the corresponding time domain signal is synthesized by setting 
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the non-harmonic transform coefficients to zero and computing the inverse transform 

of the resulting modified "spectrum" of transform coefficients. However, if the frame is 

estimated to be unvoiced or silence, the corresponding time domain signal is estimated 

by subtracting the other channel's (voiced) waveform estimate from the co-channel 

signal. 

channel A: <A> + B 

FFT speech A spectrum A IFFT post-processing 
A 

multi- 

s_A detection estimation s_A filtering 
, . 

step 
pitch 
detect. 

1 
■ 

FFT speech B spectrum B IFFT post-processing 
B s_B detection estimation s_B filtering B 

channel B: <B> + A 

<>: target signal 

Figure 2.6: Schematic diagram of automated speaker separation system of Min et al. 

The system was evaluated by subjective listening tests. Listeners were asked to 

identify words or phrases of speech extracted from a co-channel speech signal. The 

increase in intelligibility of the processed (separated) co-channel signals over the unpro- 

cessed signals was reported to be "very high." The proposed system includes a number 

of important features which are not addressed by many of the other proposed methods: 

Provisions are made for determination of each speaker's voicing, i.e. voiced or unvoiced, 

and a method for maintaining continuity of speaker identity across processing frames is 

also provided. Nevertheless, the system still exhibits a number of limitations. First of 

all, the system will not perform well when the power of the two speakers is not roughly 

equal. In this case, estimation of the weaker speaker's pitch will be susceptible to error, 

since its peak in the autocorrelation function will possibly be confused among the other, 

spurious low-level peaks, and the peaks of the other speaker's harmonics. Another lim- 

itation is the assumption of pitch stationarity within the analysis frame of 4 periods. 
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As discussed in section 2.2.1, the pitch of a speech signal can change by up to 10% from 

period to period, and the resulting pitch stationarity causes broadening of harmonic 

peaks in the frequency domain. Because of this assumption of pitch stationarity over the 

analysis frame, only those bins in the FFT which correspond to harmonic multiples of 

the estimated pitch are preserved when the separated speech is being resynthesized; the 

remaining bins are set equal to zero and the resulting modified FFT spectrum is inverse 

transformed to generate the time domain waveform. Since the harmonic peaks will be 

spread across a number of bins surrounding each actual harmonic bin, simply sampling 

the FFT at the harmonic bins will introduce distortions, especially at higher frequen- 

cies, where the harmonics will span a larger number of bins around each harmonic bin. 

Even if the pitch is stationary, such sampling of the FFT will still lead to distortions of 

the recovered signal, as it ignores the spectral lobe width around each harmonic due to 

the finite length analysis window. Another limitation is the assumption of pitch periods 

which are integral multiples of the sampling period. Since it is rather unlikely that the 

true pitch periods will be integral multiples of the sampling period, the harmonics will 

not be exactly aligned with the bins of the FFT (or FTT). This will introduce some 

distortion in the time domain signal when the FFT containing only "harmonic" bins is 

inverse transformed, even if the pitch is stationary within the analysis frame. Finally, 

the simple autocorrelation method of pitch estimation suggested here will not be able 

to accurately estimate the pitch of both speakers when their pitch periods are within 

a few sampling periods of each other.   In such situations, the discrete nature of the 

autocorrelation function and the width of each speaker's peak in the autocorrelation 

function will effectively limit the minimum frequency resolution to several multiples of 

the sampling period. 

2.2.8    Quatieri and Danisewicz's Method of Co-channel Interference 

Suppression Using a Sinusoidal Speech Model (1990) 

In [31], Quatieri and Danisewicz propose a method for suppressing interfering co-channel 

speech by utilizing a sinusoidal model for the speech signals. In the method, which 

assumes both voiced target and interference speech, the speech signals are modeled over 
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short time frames as sums of sinusoids of various frequencies, amplitudes, and phases. 

The authors investigate the two cases: 1) when a priori knowledge of the harmonic 

frequencies of each speaker is available, and 2) when no such a priori information 

is available, and the fundamental frequencies, and thus harmonic frequencies, must 

be estimated directly from the co-channel signal. Once the harmonic frequencies are 

obtained, the amplitudes and phases of the corresponding sinusoids are simultaneously 

estimated via a least-squares approach which operates on the STFT of the frame of 

co-channel speech. In certain cases, the least-squares solution becomes ill-conditioned 

when some harmonic frequencies of the two speakers become too closely spaced. In this 

case, the parameters of those harmonics are linearly interpolated from the parameters 

of adjacent frames. Finally, enhancement of the target speech signal is achieved by 

synthesizing the waveform consisting of only those sinusoidal components attributed to 

that speaker. 

Pitch estimation is accomplished by first initializing the two speakers' pitch con- 

tours with pitch estimates obtained by a finite-grid gradient search minimization of 

the difference (error) energy between the actual co-channel frame and the synthesized 

co-channel frame. The boundaries of the grid are determined by the minimum and 

maximum allowable pitch frequencies. Once these initial estimates are obtained, pitch 

estimates for successive frames are obtained by minimization of the same cost function, 

but over a frequency region restricted to a local neighborhood of the previous frame's 

pitch estimates. The entire system is illustrated in Fig. 2.7. 

The method reportedly offers effective enhancement of the target speaker from TIRs 

of 9dB to -16dB when a priori knowledge of the two speakers' pitches is available. How- 

ever, when the pitches are estimated directly from the co-channel signal, enhancement 

is only achieved when the two speakers' power are roughly equal; i.e. OdB target- 

to-interference ratio. The method shares several of the limitations of many previous 

approaches: reliance on the assumptions of only voiced target and interference speech, 

and the assumption of continuous pitch tracks (i.e. no pauses of silence). Furthermore, 

unlike Parsons' method described in section 2.2.1, pitch contours are assumed to be 

non-intersecting. There are no provisions for pitch tracking, but rather frame-to-frame 
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Figure 2.7: Schematic diagram of Sinusoidal Modeling Co-Channel Interference Sup- 
pression System. 

consistency of speaker identity is maintained by always assigning the lower pitch es- 

timate at each frame to the same speaker and the higher pitch estimate to the other 

speaker. Such an approach is quite fragile in that if one of the pitch estimates is spuri- 

ous, both of the resulting pitch assignments may be incorrect. Furthermore, since each 

frame's pitch estimates are initialized with the pitch estimates of the previous frame, 

any spurious pitch estimate will lead to erroneous pitch estimates for all successive 

frames. 

Another limitation is the assumption of pitch stationarity within the analysis frames. 

As discussed in section 2.2.1, such non-stationarity results in increased broadening of 

harmonic peaks with increasing frequency. The assumption of pitch stationarity in the 

model, as reflected by the modeling of the speech as consisting of purely sinusoidal 

components, implies ideal harmonic shapes in the STFT determined only by the shape 

of the time window used to weight the frame. Since, for true speech, the harmonic 

components aren't truly sinusoidal, the shape of the true pitch harmonics will deviate 

from the ideal peak shapes assumed in the model. Thus, the estimates of the harmonic 

amplitudes and phases obtained via the employed least-squares method will be subject 
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to error, even if the estimates of the harmonic frequencies are accurate. This will result 

in distortions of the reconstructed speech signal. 

2.2.9    Assman and Summerfield's Modeling of the Perception of Con- 

current Vowels (1990) 

In [1], Assman and Summerfield investigate two computational models as potential 

mechanisms for modeling the perception of co-channel voiced speech. Each model is 

based upon an auditory model decomposition, in which the input signal is passed into 

a parallel filter bank of 256 roughly non-overlapping bandpass filters, which span the 

0-6.2 kHz frequency range. The output of each channel is then passed through a 

compressive non-linearity, which acts as an automatic gain control (AGC), effectively 

reducing the dynamic range of the channel output. In the first model, called the "place" 

model, the representation of a given input sound is given by the relative distribution 

of power levels across the filter channels, whose center frequencies roughly correspond 

to different "places" along the cochlea. The resulting representation is analogous to 

a magnitude Fourier spectrum. A schematic of the place model is shown in Fig. 2.8. 

For this model, determination of the two speakers' pitches was accomplished via the 

Modified Duifhuis-Willems-Sluyter (MDWS) method. This method employs a series of 

"harmonic sieves" which sample a signal's magnitude spectrum at harmonic frequen- 

cies of a given fundamental frequency. The goodness of fit of a fundamental frequency 

estimate is given by the number of spectral harmonics which are passed by the cor- 

responding harmonic sieve, and the fundamental frequency whose harmonic sieve best 

fits the spectrum is chosen as the pitch. For the estimation of two pitches, the funda- 

mental frequency pair is chosen as that which jointly maximizes the number of spectral 

harmonics passed by the two corresponding harmonic sieves. The magnitude of the 

individual speaker's spectra are estimated by sampling the place model "spectrum" of 

the co-channel speech at the harmonic frequencies of each estimated pitch. 

In the second model, the "place-time" model, the standard short-time autocorrela- 

tion function (ACF), as given by Eq. 2.1, is computed for each filter channel's output. 

The ACFs for all channels are then summed to form a pooled ACF, and the two highest 
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Figure 2.8: Schematic diagram of Assman and Summerfield's place model. 

peaks in this ACF are taken to be the pitch periods of the two speakers. The magnitude 

of the individual speaker's spectra at the channel center frequencies are then estimated 

by sampling the individual channels' ACFs at time lags corresponding to each of the 

two estimated pitch frequencies. The model is shown in Fig. 2.9. 

The two models were evaluated first on pitch estimation alone, and then on a vowel 

identification task. In the pitch estimation tests, the place model performed relatively 

poorly, with a mean pitch estimate error of approximately 7 Hz over 300 test utterances. 

The poor performance was attributed to inadequate frequency resolution of the model 

which, in turn, depended on the frequency resolution of the constituent bandpass filters. 

The place-time model was found to perform significantly better than the place model 

on the same task, averaging a mean pitch estimate error of approximately 3 Hz over 

the same test data.  The improved performance over the place models is due to the 

reliance of the place-time model upon resolution in the time domain, rather than the 

frequency domain, for identification of periodicities.  In the vowel identification task, 

two vowels were summed to form a composite vowel. The composite vowels were then 

subjected to the two separation models, and the resulting two separated sounds were 

then input to a template-matching classifier. The place-time model was again found to 
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Figure 2.9: Schematic diagram of Assman and Summerfield's place-time model. 

perform better than the place model for both pitch estimation of each of the constituent 

vowels and estimation of the individual vowels' spectra. Absolute performance was 

somewhat poorer than the average performance of human subjects presented with the 

same unprocessed composite vowels. 

The methods presented in this paper demonstrated some degree of speech separation 

in the highly constrained task of vowel separation. However, they suffer from a number 

of significant limitations which limit their utility in a practical system. As stated before, 

the method is designed only for voiced on voiced speech. Also, the approaches are offered 

only as methods for performing the actual separation of frames of co-channel speech; 

as such, there are no provisions for estimation of the number of speakers present or 

for re-assembling the separated frames into continuous speech. Another, perhaps more 

significant, limitation is that no means are provided for resynthesizing the separated 

speech signals from the separated spectra. In each of the two models, the magnitude of 

the separated spectra is only evaluated at the center frequencies of the channel bandpass 

filters, not at the harmonic frequencies of the associated fundamental frequency. While 

reconstruction of the time domain signals might be accomplished by interpolation of 

the magnitude spectrum at the harmonic frequencies and inverse Fourier transforming 
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of the resulting zero-phase spectrum, the wide spacing of the channel center frequencies 

at lower frequencies may be insufficient to accurately sample the formant structure of 

the true spectrum. This limitation is significant, regardless of whether the intended 

final consumer of the separated signals is a human or a machine, as distortions in the 

spectral representation of a given sound's formant structure may result in incorrect 

interpretation of the reconstructed sound. Another limitation of the models is the 

requirement of approximately equal power of the two speakers (vowels). In the event 

that one speaker is significantly louder, even the better performing place-time model will 

suffer performance degradation in estimation of the quieter speaker's pitch, since the 

model implicitly assumes that the second highest peak in the pooled ACF represents 

the pitch of the weaker speaker, and not a harmonic or sub-harmonic of the louder 

■speaker. 

2.2.10    Naylor and Porter's Speech Separation System (1991) 

In [26], Naylor and Porter propose a method for separation of voiced speech by use of 

AR (autoregressive) spectral estimates and spectral subtraction in the complex domain. 

First the co-channel speech is divided into 40 msec frames.   Next, a high-order AR 

spectral estimate of the frame's magnitude spectrum below 550 Hz is generated using 

the modified covariance method.   The use of such a parametric spectral estimator 

allows for resolution of harmonic peaks, even for the short analysis durations, and 

for detection of the quieter speaker's harmonic peaks, which would be undetectable 

in a periodogram of the same analysis frame.  With the peaks identified in this AR 

spectral estimate, estimates of both speakers' pitch are generated by clustering the 

peak frequencies into two groups, whose constituents could be harmonically related to 

a feasible human pitch value. Once the two pitch estimates are generated in this way, 

an estimate of the complex (as opposed to magnitude-only) spectrum of one speaker is 

constructed as a linear combination of scaled complex-valued peaks centered at integral 

multiples (harmonics) of that speaker's pitch estimate and with amplitudes obtained 

by sampling the Fourier spectrum of the co-channel signal at those frequencies. Unlike 

Hanson and Wong's HMS method described in section 2.2.2, and related methods which 
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assume a peak shape which is simply a scaled and shifted version of the magnitude 

inverse Fourier transform of the of time window used (e.g. Hamming, Hanning, etc.), 

the method presented here describes the peak shape as a complex-valued, non-linear 

function of the time window. Presumably, this allows for modeling of the effects of 

the non-stationarity of speech signals. In areas where harmonic peaks overlap, a least- 

squares method, analogous to that of Quatieri and Danisewicz described in section 2.2.8, 

is used to estimate the overlapping harmonic peaks' amplitudes and phases. Finally, 

separation is accomplished by subtraction of the complex-valued spectrum estimate 

from the complex spectrum of the co-channel signal, leaving the complex spectrum of 

the other speaker's voice. A diagram of the system is shown in Fig. 2.10. 
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Figure 2.10: Schematic diagram of Naylor and Porter's speech separation system. 

The proposed system was reported to offer improved word recognition rates on co- 

channel signals at a TIR of -14 dB. Furthermore, it addresses an important problem 

which is not dealt with by many of the other methods, namely the assumption of pitch 

stationarity within the analysis interval. Thus, the method is apt to introduce less 

spectral error than methods which assume constant pitch, and thus, ideal harmonic 

peak shapes. Nevertheless, the system still faces a number of limitations in common 

with most other systems. First is its reliance upon the assumption of voiced on voiced 
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speech; no accommodations are made for the processing of voiced/unvoiced combina- 

tions. Second, the related tasks of detection of the voicing of each speaker (i.e. voiced 

or unvoiced) and determination of the number of speakers actually speaking at a given 

instant, are not addressed. Finally, no provisions are made for assigning the frames of 

separated speech to one or the other speaker, so as to assemble the individual sepa- 

rated frames into continuous utterances. In addition to these, the proposed methods 

faces a number of limitations particular to itself. First is the sensitivity of AR spectral 

estimates in low SNRs; it is well known that the AR estimates of pole locations are not 

very reliable when the SNR is not high. Since the pitch estimates of this method rely 

upon accurate estimation of the pole locations corresponding to harmonic peaks, the 

pitch estimates will not be very reliable in low SNR situations. Without accurate pitch 

estimates, the successive spectral subtraction will not sample the complex co-channel 

speech spectrum at the correct frequencies, resulting in poor separation. Due to these 

limitations, the practical utility of the system in a realistic setting is diminished. 

2.2.11    de Cheveigne's separation of concurrent harmonic sounds using 

a time-domain cancellation model of auditory processing (1993) 

In [6], de Cheveigne presents a method for separation of two harmonic sounds based 

upon time-domain multi-notch filtering of the co-channel signal. First, estimates of 

the two speakers' pitches are generated using a modification of the AMDF (average 

magnitude difference function) called the DDF (double difference function). Whereas 

in the conventional AMDF, the single pitch period estimate at time instant n is given 

by the lag index k which minimizes the AMDF function (Eq. 2.2 repeated here): 

JV-l 

AMDF(n, k) = £ ls(" + fc) ~ s(n + m + fc)l' (2'3) 
m=0 

for the speech signal s(n), in the DDF, two pitch estimates are obtained by selecting 

the pair of lag indices {fc, /} which minimizes the DDF: 

N-l 

DDF(n,fc,Z) = 5Z \s{n + m)-s{n + m + k)-s{n + m + l) + s(n + m + k + l)\ 
m=0 

(2-4) 
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over a two-dimensional {k,l} grid spanning the range of pitch periods corresponding 

to the range of feasible human pitches. The DDF corresponds to the output of the 

cascade of two multi-notch filters whose fundamental periods are given by the lags k 

and /. If the two pitch estimates are accurate, each notch filter should null out one 

of the voices, and the output of the cascade should ideally attain its minimum value, 

namely zero, de Cheveigne does not recommend a new method for reconstruction of the 

two speech signals once the two pitch estimates have been obtained, but does, however, 

review the strengths and weaknesses of the commonly used methods of enhancement of 

voiced speech by comb-filtering and attenuation of interfering voiced speech by use of 

a multi-notch filter. 

The algorithm was evaluated on a pitch estimation task in which two pitch estimates 

were generated for each of a number of pre-selected frames of co-channel speech which 

were determined to be "clean," or strongly periodic. 90% of the pitch estimates fell 

within 3% of an octave from the actual pitch, or a harmonic or sub-harmonic of that 

pitch, de Cheveigne specifically states that he "does not attempt to design a complete 

system for speech separation." Rather, the intent was merely to devise a method for 

estimation of the pitches of co-channel speech signals and to propose a physiological 

basis by which the time-domain multi-notch-filtering might be accomplished. In light of 

this fact, the lack of key components, such as means for reconstruction of the separated 

signals, estimation of the number of speakers and their voicing, and re-assembly of the 

separated speech signals into continuous utterances, is understandable. Nevertheless, 

evaluating the method strictly as a pitch estimator for co-channel speech, we find that it 

still faces number of limitations. First of all is the limited frequency resolution afforded 

by the DDF method. As the DDF is only evaluated at lags {k,l} equal to integral 

multiples of the sampling period, the frequency resolution of the DDF pitch estimates 

will be quantized accordingly. This issue is not unique to this estimator; many standard 

pitch estimators are also subject to such granularity resulting from a finite sampling 

rate. This problem might be alleviated somewhat by increasing the sampling rate or by 

interpolation of the DDF, but since the optimal {k,l} pitch estimate pair is found by 

an exhaustive search of the k-l grid, doing so will increase computation time four-fold 
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per every doubling of resolution. Additionally, the AMDF estimator also assumes pitch 

stationary within the analysis interval. The analysis frame must be long enough to 

accommodate at least four cycles of the lowest frequency pitch. However, this results in 

an excessive window length for higher pitches. In the case of a signal steadily increasing 

or decreasing in frequency from the start of the analysis frame to the end, the AMDF 

will generate a pitch estimate corresponding to the pitch of the signal near the start of 

the frame. Such a pitch estimate is not appropriate for comb- or notch-filtering of the 

entire frame. Most pitch estimators which operate on fixed frame lengths also suffer 

from the problem of requiring frame lengths which are long enough to include at least 

two cycles of the lowest frequency expected, resulting in an excessive frame length for 

the higher frequencies. However, in the case of the DDF, this problem is exacerbated by 

the fact that the frame length must be long enough to include two cycles of two signals 

with the lowest expected frequency, resulting in a minimum frame length of four times 

the longest expected pitch period. 

2.2.12    Chazan et al.'s Optimal Multi-Pitch Estimation Using the EM 

Algorithm for Co-Channel Speech Separation (1993) 

In [5], Chazan et. al present a method for performing separation of voiced speech which 

utilizes the EM (Estimate-Maximize) algorithm to optimally estimate (in the Maximum 

Likelihood sense) the pitch of each speaker. In addition, the pitch of each speaker is 

allowed to vary linearly within the analysis frame. First, each speech signal is modeled 

over the duration of a frame as a quasi-periodic signal; i.e. a periodic signal which has 

been time warped by a warping function <f>(t): 

LW)) T r 

S(t)= £ Cfce^w,     tei-1-,1-). 
fc=i l   l 

The warping function </>(£) is constrained to be of the form: 

<j,(t) = -at2 + 2irßt 
£ä 

where ß is the average pitch over the frame and a is the rate of change of pitch over 

the frame, so that the instantaneous frequency, given by (/>(t), is linear in t. It is shown 
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that determining the Maximum Likelihood estimate of each speaker's pitch and rate 

of change of pitch is equivalent to finding the warping function <f>(t), parameterized by 

a and /?, which maximizes the output of the cascade of a time-warp given by <p(t), a 

comb-filter tuned to 1 rad/sec, and an inverse time-warp given by <f>(t)~l. The Multi 

Pitch Detection Algorithm (MPDA) proceeds as follows: 1) The pitch ß and rate of 

change of pitch a for one of the speakers are found by a numerical maximization of 

the described likelihood function. The signal resulting from this maximization is then 

subtracted from the input co-channel signal, leaving an estimate of the second speech 

signal in the residual. 2) The procedure is repeated again on this residual signal to 

yield estimates of the second speaker's pitch and rate of change of pitch. The signal 

resulting from this maximization is then subtracted from the input co-channel signal, 

producing an estimate of the first speech signal. This estimate is then fed back to step 

1), and the procedure repeats, iterating back and forth, using current estimates of a 

and ß to decompose the input signal at each step, resulting in improved estimates of 

the two speech signals at each iteration, until the procedure converges. The procedure 

is illustrated schematically in Fig. 2.11. 

start 

y(t)   , 

\xl(t) time 
warping 

comb 
filter 

inverse 
time 
warping 

sl(t) 

_ 
^t- „ 

- ^^ _„,- 

x2(t) 

time 

warping 

1 (q,ß) Y 

,..-((a,ß) k. 

comb 
filter 

inverse 
time 
warping s2(t) 

Figure 2.11: Schematic diagram of Chazan et al.'s Multiple Pitch Detection Algorithm. 
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The MPDA algorithm was tested and compared against three standard pitch es- 

timation algorithms (which had been modified to produce two pitch estimates) on a 

pitch estimation task on co-channel speech at 0 dB TIR and -12 dB TIR. The MPDA 

was shown to exhibit smaller pitch errors than the other estimators, at both TIRs. No 

mention was made, subjectively or otherwise, of the quality of the separated speech 

signals. 

The MPDA algorithm addresses the important issue of pitch non-stationarity within 

analysis frames. As it allows for a linearly-changing pitch within the analysis interval, 

it should provide for more effective separation than that achievable by methods which 

assume constant pitch, for reasons described previously regarding the smearing, or FM 

broadening, of harmonic peaks due to pitch non-stationarity. However, it still suffers 

from a number of limitations in common with the other proposed methods for speaker 

separation. First is the inability to handle cases other than voiced speech on voiced 

speech; it is implicitly assumed that both talkers' speech is voiced. Second, there are 

no provisions for detection of each speaker's voicing. Thirdly, there is no mechanism 

provided for maintaining speaker continuity across the separated frames. The lack of 

these features limits the practical utility of the proposed method as a complete speaker 

separation system. 

2.2.13    Savic et al.'s Co-channel Speaker Separation Based on Maximum- 

Likelihood Deconvolution (1994) 

In [33], Savic et al. propose a method for co-channel speaker separation based upon 

Maximum-Likelihood deconvolution of the co-channel signal, so as to generate estimates 

of the excitation signal of each speaker. The resulting excitation signal estimates, when 

run through the filters of the corresponding speaker's vocal tract models, will produce 

the restored, separated speech signals. In the algorithm, each speaker's excitation 

signal Ui(t) is modeled as a "Bernoulli-Gaussian Backscatter sequence," which models 

the glottal pulse train and fricative noise. Mathematically, the excitation of the ith 

speaker is modeled as: 

Ui(t) = n(t)qi{t) + fi(t) 
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where qi(t) is a Bernoulli sequence, rj(t) is a Gaussian scale factor, and fi(t) is a fricative 

noise process. Furthermore, it is assumed that the vocal tract response of each speaker 

can be parameterized by an LPC filter, with impulse response given by Wi(t). Thus, 

the co-channel signal consisting of M speakers' voices can be represented as: 

M 

z(t) = n{t) + Y,i»i(t)*Ui{t) 

where n(t) represents additive noise. It is then shown that if the vocal tract filter co- 

efficients Wi(t) and the fricative noise variances are known or can be estimated, then 

the fricative noise sequences and glottal pulse sequences of each speaker can be esti- 

mated in a Maximum Likelihood sense. The corresponding speech signals can then be 

resynthesized by running the estimated excitation sequence of each speaker, which is 

simply the sum:of the estimated glottal pulse and fricative noise sequences, through 

the corresponding vocal tract filter Wi(t). 

The algorithm was informally tested by listening to the speech recovered by the al- 

gorithm from co-channel utterances generated by summing two separate single-speaker 

utterances, and comparing it with the original, individual utterances. Reportedly, the 

system "performed well." However, a most significant limitation of the algorithm is 

the assumption that the individual speakers' vocal tract filters are available, or can 

be estimated from the co-channel signal. In practice, these vocal tract filters are not 

available a priori, and must be estimated directly from the co-channel signal. Estima- 

tion of such filters is tantamount to performing actual separation of the speech signals, 

and without these filters, the algorithm cannot be used. In other words, in order to 

be able to estimate the vocal tract filters, or equivalently, the spectral envelope of each 

speaker's voice, one must first perform some type of speech separation. In that in most 

realistic scenarios, a priori knowledge of each speaker's vocal tract filter is not available, 

the practical utility of such an algorithm is limited. 
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2.3    Multi-Pitch Estimation via an Auditory Model-based cepstral 

pitch estimator 

2.3.1    Background on Auditory Models 

Over the past several years, there have been several attempts to incorporate a com- 

putational model of the human auditory system into the front-end processing stage 

of various automatic speech processing systems ([11], [23], [24], [9], [39], [18], [36], 

[35]). Applications of such models include pitch estimation, as well as spectral rep- 

resentation of sounds for speech recognition. While there are a number of significant 

differences among the various auditory models, they do share a number of common 

features.  A generic auditory model'is shown in Fig. 2.12.  The first stage is a large 

input outer/middle 
ear bandpass 
filter 

bandpass 

filter 

hair cell 
model ACF 

bandpass 
filter 

hair cell 
model ACF 

bandpass 

filter 

hair cell 

model ACF 

summary 
ACF 

pitch detectioi \1 
spectrum 
estimation 

Figure 2.12: Schematic diagram of a generic auditory model. 

bandwidth lowpass or bandpass filter, which models the coarse frequency selectivity of 

the outer/middle ear. Next the signal is fed into a parallel arrangement of processing 

units, which are commonly referred to as channels. Each channel consists of a number 

of sequential processing stages. The first stage is a narrowband bandpass filter, which 

models the frequency response at a particular location along the basilar membrane of 
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the cochlea. The bandpass filters are often overlapping in frequency, with center fre- 

quencies logarithmically spaced from low to high frequencies. The outputs of each filter 

are then fed into some type of hair cell model, which models the behavior of hair cells 

in the cochlea, whose function is to transduce the mechanical stimulation of a location 

along the basilar membrane into nerve firing patterns. Often this stage consists of half- 

wave rectification and contains an automatic gain control (AGC) of some type as well. 

Fig. 2.13 shows the channel outputs of a typical auditory model, produced in response 

to a voiced speech (periodic) signal input. Next, the output of each channel's hair cell 

auditory model channel outputs to periodic sound input 

Figure 2.13: Auditory model channel outputs for a periodic sound input. 

model is fed into a processing stage which performs some type of periodicity analysis 

of that channel's output. This stage is almost always implemented as the standard 

short-time ACF (autocorrelation function), as given by Eq. 2.1, or by a modification 

thereof. If the individual ACFs are juxtaposed in order of increasing channel center 

frequency, such that the time lags of each ACF are aligned with the corresponding 
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time lags of the adjacent ACFs, the resulting representation is known as a correlogram. 

The correlogram shows the spectral energy distribution and time structure of a sound 

on two independent axes. The use of such a representation for pitch determination is 

attributed to Licklider, who, in 1951, proposed the "duplex theory" of pitch percep- 

tion [17].  Finally, the ACF of all channels are summed to produce one "pooled," or 

"summary" ACF. A periodicity which is present in several channels will be reflected 

by a peak in the summary ACF, as the corresponding peaks in the individual channels' 

ACFs will add coherently in the summary ACF to produce a large peak. Conversely, 

spurious peaks occurring in the individual ACFs will not sum coherently in the sum- 

mary ACF, and should therefore not produce an significant peak in the summary ACF. 

Fig. 2.14 shows the correlogram for the same periodic input signal used in Fig. 2.13, 

and the corresponding summary ACF. Note how peaks (indicated by dark areas) which 

are consistent across channels add coherently to produce large peaks in the summary 

ACF, while those peaks which aren't consistent across multiple channels do not produce 

significant peaks in the summary ACF.  The dark vertical line in the correlogram at 

around time lag 0.009 sec, and the corresponding peak in the summary ACF indicate 

the period of the input speech signal. In that the short-time ACF is the inverse Fourier 

transform of the short-time power spectrum of a given signal, the summary ACF also 

gives an indication of the spectral shape of the input sound signal.6 

2.3.2    The auditory model cepstral pitch estimator 

The auditory model cepstral pitch estimator presented here is based upon Lyon's au- 

ditory model as detailed in [37] and [38]. Lyon's model includes most of the processing 

stages described in the previous section for the generic auditory model. The first stage is 

a large bandwidth bandpass filter modeling the frequency response of the outer/middle 

ear. This is followed by a parallel arrangement of narrowband bandpass niters, which 

6Use of the low time-lag summary ACF coefficients is sometimes used to characterize the spectral 
envelope of a given sound [9], in much the same way that low order cepstral coefficients are often used 
to represent the spectral shape of speech signals. 
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Figure 2.14:   Top:   Auditory model correlogram for a periodic sound input (darker 
shades indicate higher amplitude). Bottom: corresponding summary ACF. 
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collectively model the frequency response at different locations along the basilar mem- 

brane of the cochlea, and whose center frequencies are smoothly spaced from low to 

high frequencies.  The output of each bandpass filter is fed into a half-wave rectifier, 

which models the behavior of the inner hair cells. Then the output of each channel's 

half-wave rectifier is fed into an automatic gain control (AGC) processing stage, which 

reduces the dynamic range of the input signal. The short time ACF is computed for 

each channel's output, and the resulting functions are combined into a correlogram rep- 

resentation. In the pitch detector described in [38] which uses Lyon's auditory model, 

pitch detection is accomplished by integrating the correlogram across all channels to 

produce a summary ACF, and picking the maximum peak in this summary ACF within 

the range of lags corresponding to feasible human pitch periods. Several pre-processing 

steps are used to enhance the peak structure in the correlogram prior to integration, 

and some post-processing is done on the summary ACF as well. Nevertheless, the basic 

pitch estimation procedure is the same as that presented in the previous section for the 

general auditory model. 

The auditory model cepstral pitch estimator is identical to this pitch estimator up 

to the output of each channel's AGC. Then, rather than computing the short time 

ACF of each channel output, the (complex) cepstrum is computed. The cepstrum of a 

signal x(n) is defined as: 

c(n) = ^jTlog|X(e*)|e^^ 

This is simply the inverse Fourier transform of the logarithm of the magnitude of the 

Fourier transform X(eju) of the signal x(n). In [29], Noll described the use of the 

cepstrum for pitch estimation. It was shown that for periodic signals, the cepstrum 

will exhibit a peak at a time lag equal to the period of the signal, and smaller peaks at 

multiples of the period, much like the ACF does. This is not surprising, as the ACF is 

simply the inverse Fourier transform of the power spectrum of a signal; the only differ- 

ence between the ACF and the cepstrum is the logarithm in the cepstrum and a scale 

factor difference between the power spectrum X{eju)X*(e:>u') and magnitude spectrum 
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|X(eJCJ)|. By computing the cepstrum for each channel, a "cepstrogram" representa- 

tion, analogous to the correlogram, can be generated. As with the correlogram, the 

cepstrogram is integrated across all channels to produce a summary cepstrum. Then 

the time lag of the highest peak in the summary cepstrum, within the range of time 

lags corresponding to the range of acceptable pitch values, is taken to be indicative of 

the period of the input signal. Actually, due to the the discrete time nature of the 

cepstral sequence, the location of the peak is quantized to the nearest integral multiple 

of the sampling period. To achieve higher resolution, once the peak has been found 

in the summary cepstrum, a parabola is fitted to that point and the five surrounding 

data points; the location of the maximum of the fitted parabola is taken to be the 

refined peak location estimate. Fig. 2.15 shows a cepstrogram generated in response to 

a periodic sound input, and the resulting summary cepstrum. The dark vertical line in 

the cepstrogram and the corresponding peak in the summary cepstrum at around time 

lag 0.0075 sec correspond to the period of the input signal. 

To generate pitch estimates for two speakers, first one pitch estimate is generated, 

as detailed above. Presumably the pitch of the louder speaker will be chosen. Then 

the frame of co-channel speech is filtered with a multi-notch filter, whose nulls occur 

at frequencies which are integral multiples of this first pitch estimate. This should 

remove most of the contribution of the louder speaker's voice from the co-channel 

signal; the residual signal should ideally contain only the second speaker's voice. This 

residual signal is then fed back into the auditory model cepstral pitch estimator and 

the resulting pitch estimate is taken to be the pitch of the second speaker. 

The performance of this pitch estimator is evaluated in Chapter 3, where it is 

compared with several other pitch estimators. However, there are a number of consid- 

erations worth mentioning here. First, the method is susceptible to the effects of pitch 

nonstationarity within the analysis frame. As with the ACF, the window length must 

be at least twice the period of the lowest allowable frequency. However, such a window 

length can encompass many cycles of higher frequency inputs with their correspondingly 

shorter periods. This is not a problem if the pitch is stationary. However, as mentioned 

previously, the period of speech signals can change by 10% between adjacent cycles. As 
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Figure 2.15:  Top:   Auditory model cepstrogram for a periodic sound input (darker 
shades indicate higher amplitude). Bottom: corresponding summary cepstrum. 
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a result, the pitch of a high frequency input signal can undergo significant change within 

the analysis frame, since as the pitch of the input increases, the number of periods of 

the waveform within the analysis frame also increases. However, this pitch estimator 

can only generate a constant estimate of the pitch over the frame; it does not provide 

a measure of the change of pitch over the frame duration. As a result, the amount 

of separation/suppression attainable with subsequent processing will be reduced. For 

instance, if a time-domain multi-notch filter was to be used to reduce interference in a 

frame of co-channel speech in which the interference voice signal had highly-stationary 

pitch, the filter's effectiveness would be reduced, since its operation depends upon the 

similarity of the waveform period from cycle to cycle. 

Another potential problem may arise if the input signal is extremely bandlimited 

[32]. In such cases, where there is little periodic oscillation in the log spectrum, there 

will be no peak in the resulting cepstrum, and as a result, no peak in the summary 

cepstrum. As a result, any spurious peaks present in the summary cepstrum might be 

incorrectly identified as that due to the periodicity of the input signal. Fortunately, 

most speech signals aren't extremely bandlimited. 
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Chapter 3 

Experiments 

3.1    Preliminaries 

In that most of the proposed methods for co-channel speaker separation rely upon 

accurate estimation of one or both speakers' pitch, a natural test is to compare the 

pitch estimation accuracy of the different estimators. Some of the separation methods 

reviewed do not suggest means for estimation of the constituent speakers' pitches; it 

is assumed that this information is already available. Works falling into this category 

include those of Hanson and Wong (section 2.2.2), Lee and Childers (section 2.2.6), and 

Quatieri and Danisewicz (section 2.2.8). Savic et al's work (section 2.2.13) does not 

use pitch information at all. Of the remaining studies, there is some redundancy with 

regards to the associated method proposed for performing the actual pitch estimation. 

This being the case, the pitch estimation methods used in the following studies have 

been deemed as representative of the different methods presented, and have thus been 

chosen for testing:1 

Assman and Summerfield (section 2.2.9) "place-time" auditory model-based pitch 

estimation. 

Chazan et al. (section 2.2.12) EM-based pitch estimation. 

de Cheveigne (section 2.2.11) Pitch estimation by the DDF (Dual Difference Func- 

tion) 

Naylor and Boll (section 2.2.5) Maximum Likelihood pitch estimation. 

1Many of the proposed co-channel separation methods employ similar pitch estimation approaches. 
The choice of this particular subset of studies does not necessarily reflect the originators of a given 
method, nor the relative superiority of one implementation of a particular method over another. Rather, 
these have been chosen simply on the basis of being representative of the group. 
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Naylor and Porter (section 2.2.10) Pitch estimation by clustering of high-order 

AR spectrum peaks 

The performance of these pitch estimators will be compared with that of the auditory 

model cepstral pitch estimator presented in section 2.3. Those of the reviewed studies 

still remaining can be accounted for as follows: 

Parsons (section 2.2.1) Use of the Schroeder histogram on spectral peak frequencies 

is similar to Naylor and Porter's method of clustering peak frequencies. 

Weintraub (section 2.2.3) Use of an auditory cochlear model and pooled ACF is 

similar to that of Assman and Summerfield's "place-time" auditory model-based 

pitch estimator. 

Min et al.(section 2.2.7) Use of ACF and AMDF is similar to de Cheveigne's DDF. 

Some of the speaker separation methods employ a one-pass approach to estimate 

the pitch of both speakers at one time. Others methods are iterative and follow the 

general sequence of steps: 1) estimate pitch of speaker 1, 2) use this estimate to suppress 

the voice of speaker 1 in the co-channel signal frame, 3) estimate pitch of speaker 2 

from the residual signal, 4) (optional) use this pitch estimate to suppress the voice 

of speaker 2 from the co-channel frame and feed the resulting residual signal back 

to step 1). In this respect, of the methods chosen for testing, those of Assman and 

Summerfield, Naylor and Porter, and de Cheveigne can be considered as non-iterative, 

while the method of Chazan et al. and the auditory model cepstral pitch estimator 

are iterative methods. Note that many of the non-iterative methods can be modified 

to be iterative, by following the sequence of steps outlined above. It is assumed that 

iterative implementations of the one-pass approaches would yield better pitch estimates. 

However, the intent here is to test the pitch estimation algorithms as presented by their 

authors, without modification or enhancement. The exception here is the Maximum 

Likelihood pitch estimation, as used by Naylor and Boll (section 2.2.5), and presented 

in [44]. In Naylor and Boll's work, only the pitch of the louder, interference, speaker 

was estimated via the Maximum Likelihood estimator. However, as will be discussed 
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below, it is often useful to have pitch estimates of both speakers' voices. This being the 

case, the Maximum Likelihood estimator was extended into a dual-pitch estimator by 

the general 4-step procedure outlined above. 

As indicated above, some speaker separation methods only utilize the pitch estimate 

of one speaker, typically the louder speaker. If the interference speaker is assumed to be 

the louder, then this pitch estimate is used to suppress the interference speech, and an 

estimate of the target speaker's speech is given by the residual signal. If, however, the 

target speaker is assumed to be the louder, then the pitch estimate is used to enhance 

the target speech, with a comb filter, for instance.  In the general case, however, it 

cannot be assumed that the target speaker or the interference speaker is always louder; 

in some scenarios, both speakers will be at roughly equal power, or the ratio of relative 

power may change over time.  Similarly, it cannot always be assumed that the voice 

of one speaker can be estimated as the residual left after suppression of the voice of 

the other speaker in the co-channel signal.  This assumption would be violated, for 

instance, if the co-channel signal contains not only speech signals, but noise, or other 

interference, as well.   In these general cases, it is useful to have pitch estimates of 

both speakers' speech. In this way, the voice of both speakers can be estimated, either 

directly by signal enhancement techniques, or indirectly, by suppression of the other 

speaker's voice. Of those studies chosen for evaluation, only that of Naylor and Boll did 

not present a scheme for estimation of both speakers' pitch. Therefore, the Maximum 

Likelihood monophonic pitch estimator used in that study has been modified by the 

author to generate two pitch estimates, so as to be more readily comparable with the 

other estimators. 

3.2    Database 

The speech database used for the experiments was recorded at the CAIP Center, at 

Rutgers University. The database consists of the six sentences listed in Table 3.1. 

These sentences, taken from [31], have been constructed so as to consist almost entirely 

of voiced sounds. The entire database was recorded twice, once by a native-American 

male speaker ("speaker 1") and once by a non-native-American male speaker ("speaker 
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A. "We were away in Walla Walla." 
B. "Our rule will lower your ear away." 
C. "Why were you away a year Roy?" 
D. "All wear your ear low." 
E. "Wear your ear low." 
F. "All rare laws are well." 

Table 3.1: Database used in pitch estimation and separation effectiveness experiments. 

2"). In addition, an utterance of sentence C was recorded by a third, non-native- 

American speaker ("speaker 3"). The recording was performed in the relatively quiet, 

but not anechoic, office environment of the speech processing lab at the CAIP Center. 

A close-talking microphone was used for the recordings, which were sampled at 16 kHZ 

and digitized at 16 bits per sample. Finally, the mean of each of the recorded sentences 

was removed from the recordings, so as to eliminate the effects of any DC biasing in 

the recording equipment. 

3.3    Experimental details 

To test the pitch estimation accuracy of the selected pitch estimation methods, first 

reference pitch estimates were generated from the individual utterances in the database, 

by use of the super-resolution pitch estimator detailed in [22]. This reference pitch esti- 

mator also generated voiced/unvoiced decisions. Fig 3.1 shows the reference pitch esti- 

mates generated for sentences A2 and C3 (sentence A spoken by speaker 2 and sentence 

C spoken by speaker 3) as an example. Then a database of four, two-speaker utterances 

was constructed by individually summing the utterances of sentences A, D, E, and F 

spoken by speaker 2 with the utterance of sentence C spoken by speaker 3. This pro- 

duced four composite sentences: A2 + C3,D2 + C3,E2 + C3, and F2 + C3, where the 

subscript indicates the speaker number. 

3.3.1    Experiment 1: pitch estimation at varying WRs 

In this experiment, the goal was to evaluate the performance of the different pitch 

estimators under varying voice to voice ratios (WRs). To this end, first the samples 
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Figure 3.1: Reference pitch estimates generated for sentence A spoken by speaker 2 
(A2) and sentence C spoken by speaker 3 (C3). 

of utterance C3 were scaled so that the variance over the entire utterance was equal 

to unity. Then the samples of utterances A2,D2,E2, and F2 were scaled such that 

the resulting composite sentences A2 + C3,D2 + C3,E2 + C3, and F2 + C3, produced 

by summation of the appropriate utterances, would have a WR of 0 dB. These four 

composite sentences were then fed into each of the pitch estimation algorithms, which 

generated two pitch estimates for each input frame. The resulting pitch estimates were 

compared on a frame-by-frame basis with the reference pitches. Only those frames, in 

which both speakers' voices were marked as voiced by the reference pitch estimator, 

were used in the comparisons; pitch estimates generated for all other input frames were 

not counted. This procedure was then repeated for WRs of 5 dB, 10 dB, and 15 dB. 

3.3.2    Experiment 2: pitch estimation under degraded conditions 

In this experiment, the goal was to evaluate the performance of the different pitch esti- 

mators when the co-channel speech signal has undergone degradations due to channel 
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distortions or additive noise. Such types of distortions are typically encountered in var- 

ious communications scenarios. First the composite sentences A2 + C3, D2 + C$, E2 + 

Cz, and F2 + C3 were produced by summation of the constituent sentences. The sam- 

ples of each individual sentence were scaled to equal (unit) variance, so that resulting 

composite sentences had a 0 dB WR. 

To simulate the effects of channel distortions, the composite sentences were fil- 

tered with an FIR filter channel simulator which models the frequency response of a 

typical Continental Mid-quality Voice (CMV) phone line [15], featuring moderate low- 

frequency and high-frequency attenuation. The resulting degraded composite sentences 

were then fed into each of the pitch estimation algorithms, which generated two pitch 

estimates for each input frame. Again, the resulting pitch estimates were compared on 

a frame-by-frame basis with the reference pitches. Only those frames in which both 

speakers' voices „were marked as voiced by the reference pitch estimator were used in 

the comparisons; pitch estimates generated for all other input frames were not counted. 

The above procedure was then repeated with a Continental Poor-quality Voice (CPV) 

channel simulator filter [15], which features more drastic attenuation of low and high 

frequencies than the CMV channel. The (magnitude) frequency response of the two 

channel simulators is shown in Fig. 3.2. 

To investigate the effects of additive noise, white noise was added to each of the 

clean composite sentences so that the resulting SNRs were 10 dB. As with the channel- 

degraded speech, the resulting noise-degraded composite sentences were then fed into 

each of the pitch estimation algorithms, which generated two pitch estimates for each 

input frame. Comparison of the resulting pitch estimates with the reference pitch esti- 

mates proceeded in the same fashion as that described above for the channel-degraded 

speech. 
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Figure 3.2: Frequency response of CMV (top) and CPV (bottom) channel simulator 
filters. 

3.4    Experimental results 

3.4.1    Experiment 1: pitch estimation at varying WRs 

Figs. 3.3-3.7 show the pitch estimates generated by the individual estimators on the 

composite sentence {Ai + C3} at 0 dB VVR; the reference pitch tracks are shown in 

Fig. 3.1. Visual inspection and comparison of these graphs seems to indicate that the 

estimators are, for the most part, tracking the two speakers' pitches fairly closely. To 

quantify the results, first all pitch estimates are converted to an octave scale relative 

to 110 Hz to facilitate comparison. Then the first and second pitch estimates for each 

frame are individually compared with the closest reference pitch estimate for that frame. 

Figs. 3.9-3.14 show histograms of the pitch errors made by each of the estimators, 

accumulated over all testing utterances at 0 dB WR. These results are summarized 

quantitatively in Table 3.2, which shows the percentage of frames in which the first and 

second pitch estimates fell greater than 10%, 3%, 2%, and 1% of an octave from the 

closest reference pitch estimate for that frame; i.e. the percentage of frames in which 
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the errors in the pitch estimates were greater than 10%, 3%, 2%, and 1% of an octave. 

In the case of 5 dB, 10 dB, and 15 dB VVRs, the first pitch estimate typically reflects 

the pitch of the louder speaker, while the second pitch estimate corresponds to the 

quieter speaker. The "total" column indicates the error percentages when the first and 

second pitch estimate errors are considered collectively. In that accurate determination 

of each speaker's pitch is a necessary, but not sufficient, condition for effective speaker 

separation, smaller percentage figures are better. 

A typical error made by pitch estimators is that of octave errors, in which a multiple 

or sub-multiple of the actual pitch period is incorrectly identified as the pitch period. 

Such errors are reflected in the error histograms by the counts clustered around integer 

values of the abscissa. Table 3.3 shows the results of the same experiment after octave 

errors have been normalized; i.e. pitch estimates resulting in errors of greater than 1 

octave are adjusted by adding or subtracting an integer number of octaves so as to 

bring the resulting pitch estimate within one octave of the reference pitch. 
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Figure 3.3: Pitch estimates generated by Assman and Summerfield's pitch estimator 
for composite sentence A\ + Cz (VVR=0 dB). 
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Figure 3.4: Pitch estimates generated by Chazan et al's pitch estimator for composite 
sentence Ax + C3 (WR=0 dB). 
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Figure 3.5: Pitch estimates generated by de Cheveigne's DDF pitch estimator for com- 
posite sentence Ai + C3 (VVR=0 dB). 

A-57 



250 

200- 

150 

100 

50 

Naylor & Boll pitch estimates for sentence A (spkr 2) and sentence C (spkr 3) 
       '                  ' 1        °i 5"1 '  

0 
0° 

" o 
0 

00     o 
o   oo0xx                                                                  x 

x                   *X ■D         yX                         X           ^^ 

/       .xxx0o     «W*"X 
x*         0              ^V^^^^^o^   ° 

^V^xxxx           x 

0                                                                          *x        0 ox 
Xox 

0                  1 

■ 

0  HX  ■» 

x    1st pitch estimate 
0    2nd pitch estimate 

1 —1  —      ■  1                          1                          1 

0.5 1 1.5 2.5 
x10 
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Naylor and Boll for composite sentence A\ + C3 (WR=0 dB). 
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Figure 3.7: Pitch estimates generated by Naylor and Porter's pitch estimator for com- 
posite sentence A\ + C3 (VVR=0 dB). 
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Figure 3.8: Pitch estimates generated by auditory model cepstral pitch estimator for 
composite sentence A\ + C3 (WR=0 dB). 

algorithm 

Aisman & Summerfield 

VVR  I 

0 dB   || 
5 dB 

lit 

4% 
4% 

> 10% 
2nd   l 

18% 
25% 

total 

11% 
14% 

1st   1 

7% 
7% 

>3% 
2nd 

22% 
32% 

total 

15%   1 
19% 

1st _! 

13% 
15% 

>2% 
2nd   1 

31% 
39% 

total 

22%   1 
27% 

1st  1 

39% 
40% 

>T% 
2nd  1 
52% 
59% 

total 

45% 
49% 

10 dB        4% 
15 dB   (I   5% 

0 dB   I)   7% 

39% 
55% 

16% 

22% 
30% 

12% 

7% 
8% 

16% 

51% 
69% 

22% 

29% 
38% J 
19%   I 

13% 
15% 

30% 

61% 
74% 

35% 

37%   1 
45%_l 
32%   1 

36% 
37% 

56% 

75% 
86% 

64% 

56% 
61%" 

60% 

5 dB        6% 26% 16% 17% 36% 27% 31% 46% 39% 58% 67% 

« 10 dB        9% 45% 27% 15% 58% 36%   1 29% 64% 46% 54% 78% 66% 

» 15 dB   II   9% 52% 30% 17% 66% 42%   1 30% 76% 53%   1 56% 89% 72% 

de Cheveitrne 0 dB   M   2% 22% 12% 9% 27% 18%   1 21% 36% 29%   1 51% 62% 57% 

5 dB        2% 29% 16% 12% 35% 23% 27% 42% 34% 55% 63% 59% 
u 10 dB   II   2% 38% 20% 15% 42% 29% 31% 49% 40% 58% 69% 63% 

" 15 dB   II   9% 35% 22% 32% 45% 39%J 50% 50% 49%   1 68% 72% 
1     ,,>>      1 

70% 
1—jitft 

Navlor & Boll 0 dB   II   4% 
5 dB        3% 

10% 
23% 

7% 
13% 

9% 
5% 

21% 
35% 

15% 
20% 

13% 
9% 
7%™ 

47% 28%   1 
41%   1 

34% 64% 
82% 

49% 
56% 

  
15 dB   II   2% 54% 28% 4% 80% 42% 6% 87% 46% 29% 92% 60% 

Naylor & Porter 0 dB   1 6% 33% 19% 13% 41% 27% 24% 51% 37% 50% 68% 59% 

« 5 dB 5% 57% 31% 16% 67% 42% 25% 75% 50% 52% 88% 70% 

« 10 dB 4% 82% 43% 11% 90% 51% 21% 93% 57% 53% 96% 75% 

- 15 dB 4% 92% 48% 12% 98% 55% 26% 99% 62% 56% 99% 78% 

auditory-cepitral OdB 6% 10% 8% 8% 18% 13% 16% 26% 21% 34% 45% 39% 

" 5 dB 4% 15% 9% 7% 27% 17% 13% 36% 25% 28% 55% 41% 

« 10 dB 2% 18% 10% 6% 38% 22% 9% 50% 29% 26% 65% 46% 

" 15 dB 4% 28% 16% 6% 58% 32% 10% 70% 40% 27% 81% 54% 

Table 3.2: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate. 
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algorithm VVR > 10% >3% > 2% > 1% 
1st 2nd total lat 2nd total lat 2nd total 1st 2nd total 

Assman & Summerfield OdB 3% 13% 8% 6% 22% 14% 13% 31% 22% 39% 52% 45% 
" 5 dB 2% 18% 10% 6% 30% 18% 15% 38% 26% 40% 58% 49% u 

10 dB 2% 29% 16% 6% 49% 28% 13% 59% 36% 36% 75% 56% u 
15 dB 4% 46% 25% 8% 66% 37% 15% 72% 43% 37% 84% 61% 

Chazan et al. OdB 4% 10% 7% 15% 21% 18% 29% 35% 32% 55% 64% 59% 
" S dB 2% 19% 11% 15% 35% 25% 29% 46% 37% 56% 67% 61% 
" 10 dB 5% 35% 20% 12% 53% 32% 26% 62% 44% 51% 76% 63% u 

15 dB 6% 44% 25% 16% 64% 40% 29% 73% 51% 55% 87% 71% 

de Cheveigne' OdB 1% 16% 9% 9% 22% 16% 21% 30% 26% 51% 58% 54% 
" 5 dB 2% 27% 14% 12% 33% 22% 27% 41% 34% 55% 62% 58% 
" 10 dB 2% 36% 19% 15% 41% 28% 31% 49% 40% 58% 68% 63% u 

15 dB 7% 32% 20% 32% 44% 38% 47% 49% 48% 67% 72% 70% 

Naylor & Boll 0 dB 3% 6% 5% 7% 18% 13% 12% 29% 20% 41% 53% 47% 
" 5 dB 2% 16% 9% 4% 31% 18% 8% 44% 26% 33% 61% 47% 
" 10 dB 2% 31% 17% 5% 56% 31% 7% 72% 39% 30% 79% 55% 
" 15 dB 2% 47% 25% 4% 78% 41% 6% 86% 46% 29% 91% 60% 

Naylor & Porter OdB 5% 31% 18% 12% 40% 26% 23% 50% 36% 50% 67% 59% u 
5 dB 4% 53% 29% 16% 67% 41% 24% 75% 49% 52% 88% 70% u 

10 dB 4% 79% 41% 11% 89% 50% 21% 92% 57% 53% 95% 74% 
" 15 dB 4% 87% 46% 12% 96% 54% 26% 98% 62% 56% 98% 77% 

auditory-cepatral OdB 2% 7% 5% 6% 15% 10% 15% 24% 19% 33% 44% 39% 
" 5 dB 2% 12% 7% 6% 26% 16% 12% 35% 24% 28% 55% 41% 
" 10 dB 2% 13% 8% 5% 36% 21% 9% 49% 29% 26% 64% 45% u 

15 dB 4% 21% 12% 6% 56% 31% 10% 68% 39% 27% 79% 53% 

Table 3.3: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate after octave errors have been 
normalized. 

3.4.2    Experiment 2: pitch estimation under degraded conditions 

Table 3.4 shows the percentage of frames, over all testing utterances, in which the 

pitch errors were greater than 10%, 3%, 2%, and 1% of an octave when the 0 dB WR 

composite sentences were degraded by the CMV channel simulator. Table 3.5 shows 

the same results, after octave errors have been normalized. 

Table 3.6 shows the percentage of frames, over all testing utterances, in which the 

pitch errors were greater than 10%, 3%, 2%, and 1% of an octave when the 0 dB 

WR composite sentences were degraded by the more severe CPV channel simulator. 

Table 3.7 shows-the same results, after octave errors have been normalized. 

Table 3.8 shows the percentage of frames, over all testing utterances, in which the 

pitch errors were greater than 10%, 3%, 2%, and 1% of an octave when the 0 dB WR 

composite sentences were degraded by white noise at a SNR of 10 dB. Table 3.9 shows 

the same results, after octave errors have been normalized. 

A-60 



algorithm VVR > 10% > 3% "> 2% > 1% 

1st 2nd total 1st 2nd total 1st 2nd total 1st 2nd total 

Assman & Summerfield OdB 7% 19% 13% 9% 27% 18% 15% 33% 24% 36% 58% 47% 

Chazan et al. 0 dB 25% 32% 28% 29% 40% 34% 33% 44% 39% 56% 68% 62% 

de Cheveigne OdB 1% 18% 10% 4% 19% 11% 6% 13% 21% 17% 29% 23% 

Naylor & Boll OdB 10% 12% 11% 12% 24% 18% 18% 35% 26% 36% 54% 45% 

Naylor & Porter OdB 5% 24% 14% 19% 43% 31% 32% 52% 42% 59% 74% 67% 

auditory-cepstral OdB 5% 11% 8% 7% 23% 15% 13% 30% 21% 30% 50% 40% 

Table 3.4: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate when the speech has passed 
through the CMV channel. 

algorithm VVR > 10% >3% >2% > 1% 
ist 2nd total 1st 2nd total 1st 2nd total 1st 2nd total 

Assman & Summerfield OdB 5% 15% 10% 9% 26% 18% 15% 33% 24% 36% 58% 47% 

Chazan et al. OdB 18% 25% 22% 25% 38% 32% 30% 44% 37% 53% 68% 61% 

de Cheveigne 0 dB 1% 13% 7% 4% 14% 9% 6% 16% 11% 17% 24% 21% 

Naylor & Boll 0 dB 7% 9% 8% 10% 23% 16% 16% 35% 25% 35% 53% 44% 

Naylor & Porter 0 dB 5% 21% 13% 19% 42% 31% 32% 51% 42% 59% 73% 66% 

auditory-cepstral 0 dB 4% 10% 7% 7% 22% 15% 13% 30% 21% 30% 50% 40% 

Table 3.5: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate when the speech has passed 
through the CMV channel and after octave errors have been normalized. 

algorithm VVR > 10% >3fc > 2% > 1% 
1st 2nd total ist 2nd. total 1st 2nd total 1st 2nd total 

Assman & Summerneld 0 dB 6% 22% 14% 9% 30% 19% 15% 35% 25% 35% 57% 46% 

Chazan et al. 0 dB 27% 39% 33% 33% 45% 39% 38% 51% 44% 57% 68% 62% 

de Cheveigne 0 dB 4% 20% 12% 7% 21% 14% 9% 22% 16% 19% 31% 25% 

Naylor & Boll 0 dB 15% 16% 16% 19% 31% 25% 21% 37% 29% 38% 61% 49% 

Naylor as Porter 0 dB 2% 29% 16% 17% 47% 32% 28% 55% 41% 61% 72% 67% 

auditory-cepstral 0 dB 6% 16% 11% 8% 29% 19% 14% 36% 25% 29% 55% 42% 

Table 3.6: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate when the speech has passed 
through the CPV channel. 

algorithm VVR > 10% >3% >2fc > 1% 
1st 2nd total 1st 2nd total 1st 2nd total 1st 2nd total 

Assman & Summerneld 0 dB 4% 15% 10% 9% 28% 18% 15% 34% 24% 35% 56% 46% 
Chazan et al. OdB 19% 33% 26% 29% 41% 35% 34% 48% 41% 55% 67% 61% 

de Cheveigne 0 dB 4% 15% 9% 7% 16% 12% 9% 17% 13% 19% 26% 22% 

Naylor & Boll 0 dB 9% 13% 11% 13% 29% 21% 17% 36% 26% 35% 60% 48% 
Naylor & Porter 0 dB 2% 24% 13% 17% 45% 31% 28% 53% 41% 61% 71% 66% 
auditory-cepstral 0 dB 6% 14% 10% 8% 28% 18% 14% 36% 25% 29% 55% 42% 

Table 3.7: Percentage of estimates that fell further than 10%, 3%, or 1% of an octave 
(relative to 110 Hz) from the reference pitch estimate when the speech has passed 
through the CPV channel and after octave errors have been normalized. 
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Figure 3.9:  Histogram of pitch errors of Assman and Summerfield's pitch estimator 
(VVR=0 dB). 
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Figure 3.10: Histogram of pitch errors of Chazan et al.'s pitch estimator (WR=0 dB). 
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Figure 3.11:    Histogram of pitch errors of de Cheveigne's DDF pitch estimator 
(VVR=0 dB). 
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Figure 3.12: Histogram of pitch errors of Maximum Likelihood pitch estimator used by 
Naylor and Boll (VVR=0 dB). 
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Figure 3.13:    Histogram of pitch errors of Naylor and Porter's pitch estimator 
(VVR=0dB). 
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Figure 3.14: Histogram of pitch errors of the auditory model cepstral pitch estimator 
(WR=0 dB). 
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algorithm VVR > 10% > 3% > 2% > 1% 
1st 2nd total 1st 2nd total 1st 2nd total 1st 2nd total 

Assman & Summerneid 0 dB 29% 41% 35% 39% 52% 45% 45% 64% 55% 66% 77% 72% 
Chazan et al. 0 dB 64% 71% 67% 77% 79% 78% 81% 85% 83% 87% 93% 90% 
de Cheveigne 0 dB 2% 29% 16% 12% 36% 24% 24% 44% 34% 53% 65% 59% 
Naylor & Boll 0 dB 5% 9% 7% 8% 19% 13% 13% 29% 21% 44% 54% 49% 

Naylor & Porter OdB 6% 35% 21% 17% 47% 32% 29% 56% 42% 55% 73% 64% 
auditory-cepstral 0 dB 30% 38% 34% 36% 55% 45% 44% 63% 54% 57% 79% 68% 

Table 3.8: Percentage of estimates that fell further than 10%, 3%, or 1% of an oc- 
tave (relative to 110 Hz) from the reference pitch estimate when the speech has been 
corrupted by 10 dB white noise. 

algorithm VVR > 10% >3% >2% > 1% 
1st 2nd total 1st 2nd total 1st 2nd total 1st 2nd total 

Assman & Summerneld 0 dB 25% 32% 28% 38% 48% 43% 44% 61% 52% 66% 76% 71% 
Chazan et al. 0 dB 48% 54% 51% 69% 73% 71% 75% 81% 78% 84% 90% 87% 
de Cheveigne OdB 2% 21% 12% 12% 29% 20% 24% 37% 30% 53% 58% 56% 
Naylor & Boll 0 dB 4% 6% 5% 7% 16% 12% 12% 28% 20% 44% 53% 48% 

Naylor & Porter 0 dB 6% 32% 19% 17% 44% 30% 29% 53% 41% 55% 71% 63% 
auditory-cepstral 0 dB 27% 33% 30% 33% 52% 42% 42% 62% 52% 55% 78% 66% 

Table 3.9: Percentage of estimates that fell further than 10%, 3%, or 1% of an oc- 
tave (relative to 110 Hz) from the reference pitch estimate when the speech has been 
corrupted by 10 dB white noise and after octave errors have been normalized. 
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Chapter 4 

Conclusion 

4.1    Discussions 

4.1.1    Experiment 1: pitch estimation at varying WRs 

• The auditory model cepstral pitch estimator generated fewer total pitch errors 

than all other methods, across all WRs tested, and for all error thresholds, 1% 

2%, 3%, and 10% of an octave; the one exception was the percentage of total 

errors > 10% at 0 dB WR, where it scored 1% more errors than the lowest 

scoring estimator for that case. 

• As the WR was increased, the error rates for some of the pitch estimators' first 

pitch estimates increased; this is surprising in that as the WR increases, the 

interference due to the secondary speaker should decrease, making the primary 

speaker's pitch more readily detectable. 

• For increasing WRs, the error rates of the secondary pitch estimates increased 

as well. This was to be expected, since a positive WR means that the power of 

the secondary speech signal is less than that of the primary one. 

• The auditory model cepstral pitch estimator performed significantly better than 

the estimator of Assman and Summerfield, which is also based upon an auditory 

model, especially at the 1% octave error threshold and WRs of 5 dB, 10 dB, and 

15 dB. 

• All pitch estimation methods were shown to be prone to some octave errors; 

however, the similarity of Tables 3.2 and 3.3 indicates that none of the pitch 

estimators experienced an appreciable amount of such errors. 
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4.1.2    Experiment 2: pitch estimation under degraded conditions 

• In the case of degradation by the CMV channel, the DDF method of de Cheveigne 

outperformed all other methods, by roughly a factor of two. 

• For the CMV channel degradation, the auditory model cepstral pitch estimator 

generated the second fewest errors. The pitch estimator of Assman and Sum- 

merfield and the Maximum Likelihood pitch estimator used by Naylor and Boll 

performed about the same, generating the third fewest errors, followed by Chazan 

et al.'s and Naylor and Porter's pitch estimators, both operating at roughly three 

times the error rate of the best performing DDF estimator. 

• Performance of the pitch estimators was roughly equal in the case of the CMV 

channel and in the case of no channel (and 0 dB WR). The one striking exception 

was de Cheveigne's DDF estimator, whose error rates decreased by roughly a 

factor of two. It may be that the smoothing of the time domain waveform, afforded 

by the high-frequency attenuation of the CMV channel, resulted in less sensitivity 

of the ACF-based DDF pitch estimator. It is common practice to smooth a signal 

with low-pass filter prior to pitch analysis via the ACF, so as to reduce the effects 

of high frequencies which tend to reduce correlation values and spuriously bias 

the resulting pitch estimates. A second, less striking exception was the pitch 

estimator of Naylor and Porter, whose error rates increased in the CMV channel 

case by 8% in total error rate at the 1% octave threshold. 

• Degradation by the CMV channel did not seem to have any significant effect 

on the percentage of octave errors made by any of the pitch estimators; this is 

reflected in the similarity of Tables 3.4 and 3.5. This was somewhat surprising, 

in that it was thought that the roll-off of the CMV filter at the low frequency 

end might cause attenuation of the fundamental frequency in some speech signals, 

which could possibly result in more octave errors being made. 

• When the co-channel signal has been degraded by the more severe CPV channel, 

de Cheveigne's DDF method emerged as the best performer, again scoring error 
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rates roughly half that of the next best performing algorithm. 

• For the CPV channel, the auditory model cepstral pitch estimator again generated 

the second fewest errors, followed by the estimators of Assman and Summerfield 

and the Maximum Likelihood pitch estimator used by Naylor and Boll, and finally 

Chazan et al.'s and Naylor and Porter's estimators. 

• Performance of the pitch estimators was roughly equal in the case of the CPV 

channel and in the case of no channel (and 0 dB WR). The notable exception 

again was de Cheveigne's pitch estimator, whose error rates again dropped by 

a factor of two with respect to the no channel case. Again, this improvement 

can probably be attributed to the time-domain smoothing afforded by the high- 

frequency attenuation of the CPV filter. A second, less drastic exception was the 

pitch estimator of Naylor and Porter's, whose error rates increased in the CPV 

channel case by 7% in total error rate at the 1% octave threshold. 

• Degradation by the CPV channel also did not seem to have any significant effect 

on the percentage of octave errors made by any of the pitch estimators; this is 

reflected in the similarity of Tables 3.6 and 3.7. Again, this was surprising, as 

the increased low-frequency attenuation of the CPV channel relative to the CMV 

channel would be expected to attenuate fundamental frequency components of 

input signals even more so. 

• In the case of additive 10 dB white noise, as expected, all pitch estimators ex- 

perienced performance degradation. The Maximum Likelihood pitch estimator 

employed by Naylor and Boll emerged as the best performer, scoring 10% fewer 

overall errors than the next best performing algorithm. The DDF pitch estimator 

and the Maximum Likelihood pitch estimator experienced almost no degradation 

with respect to the no noise case. Assman and Summerfield's pitch estimator, 

Chazan et al.'s pitch estimator and and the auditory model cepstral pitch esti- 

mator suffered significant performance degradations. 
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4.1.3    General discussions 

• There were a total of 165 frames which were used in the computation of the error 

rates. Therefore, all figures have a granularity of ^ = 0.61%. 

• As pointed out several times in the review of the previous work, current systems 

for co-channel speaker separation suffer from a number of limitations. These 

include: 1) inability to process cases other than voiced speech on voiced speech, 

2) inability to accurately detect the voicing of each speaker and the number of 

speakers speaking at a given instant, 3) inability to maintain continuity of speaker 

identity from frame to frame, 4) limited separation effectiveness due to pitch 

estimation inaccuracy and limited pitch estimate resolution, 5) limited separation 

effectiveness due to inaccurate modeling of the quasi-periodic nature of real voiced 

speech. While each of the proposed methods does not suffer from all of these 

limitations, all of the methods are subject to at least some of these limitations, 

and possibly others not mentioned here but discussed in Chapter 2. The main 

limitation faced by most previous work, however, is that usually, only the tasks 

of pitch estimation and signal separation were addressed; very few attempts were 

made to integrate these processing stages into complete systems. 

4.2    Summary 

• A comprehensive review of all major work on co-channel speaker separation was 

presented. It was shown that most speaker separation methods consisted of two 

main processing stages: 1) estimation of the speakers' pitches, and 2) separation 

of the speech signals using these pitch estimates. 

• A new method for performing estimation of both speakers' pitches from the co- 

channel speech signal was developed. 

• The performance of this pitch detection algorithm was tested under a variety 

of WRs and signal degradations, including distortion due to frequency selective 

channels and additive noise. Performance was compared with the pitch estimation 

A-72 



algorithms employed in a number of speaker-separation studies. 

• For clean co-channel speech, the auditory model cepstral pitch estimator emerged 

as the best overall performer, producing the lowest error rates at all tested WRs, 

and across all error thresholds. 

• For channel-degraded co-channel speech, de Cheyeigne's DDF pitch estimator 

markedly outperformed all other estimators, typically by a factor of one half 

fewer errors. 

• For noise-corrupted co-channel speech, the Maximum Likelihood pitch estimator 

employed by Naylor and Boll outperformed all others. 

4.3    Future Work 

• Most all previous work has focused on the voiced/voiced case, and has revolved 

around the estimation of the speakers' pitches from the co-channel signal. It 

appears that methodologies based on this type of pitch-based approach have been 

exhausted, and that only limited, if any, further progress can be made in this 

direction. New separation methods, based upon the formant structure of co- 

channel speech, rather than the pitch structure, need to be developed in order to 

be able to achieve separation of arbitrary types of speech combinations, not just 

voiced on voiced speech. Preliminary work in this direction is already underway. 

• A critical, though not widely-addressed issue in co-channel speaker separation is 

the accurate determination of the number of speakers present and the voicing of 

those speakers. While a few studies have briefly addressed this problem, the brunt 

of the research has been on pitch estimation from the co-channel signal. However 

this processing step is necessary for ensuring that subsequent stages process the 

co-channel signal in a manner consistent with the nature of the voice signal(s) 

present. 
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